# --- Dummy Model Summaries --- # Define functions that simulate model summary generation dummy_models = { "Model Alpha": lambda context, question, answerable: f"Alpha Summary: Based on the context for '{question[:20]}...', it appears the question is {'answerable' if answerable else 'unanswerable'}.", "Model Beta": lambda context, question, answerable: f"Beta Summary: Regarding '{question[:20]}...', the provided documents {'allow' if answerable else 'do not allow'} for a conclusive answer based on the text.", "Model Gamma": lambda context, question, answerable: f"Gamma Summary: For the question '{question[:20]}...', I {'can' if answerable else 'cannot'} provide a specific answer from the given text snippets.", "Model Delta (Refusal Specialist)": lambda context, question, answerable: f"Delta Summary: The context for '{question[:20]}...' is {'sufficient' if answerable else 'insufficient'} to formulate a direct response. Therefore, I must refuse." } # List of model names for easy access model_names = list(dummy_models.keys()) def generate_summaries(example, model_a_name, model_b_name): """ Generates summaries for the given example using the assigned models. """ # Create a plain text version of the contexts for the models context_text = "" if "contexts" in example and example["contexts"]: context_parts = [] for ctx in example["contexts"]: if isinstance(ctx, dict) and "content" in ctx: context_parts.append(ctx["content"]) context_text = "\n---\n".join(context_parts) else: # Fallback to full contexts if highlighted contexts are not available context_parts = [] if "full_contexts" in example: for ctx in example["full_contexts"]: if isinstance(ctx, dict) and "content" in ctx: context_parts.append(ctx["content"]) context_text = "\n---\n".join(context_parts) # Pass 'Answerable' status to models (they might use it) answerable = example.get("Answerable", True) question = example.get("question", "") # Call the dummy model functions summary_a = dummy_models[model_a_name](context_text, question, answerable) summary_b = dummy_models[model_b_name](context_text, question, answerable) return summary_a, summary_b