import gradio as gr import random import pandas as pd import os import threading import time import numpy as np from utils.data_loader import get_random_example from utils.models import generate_summaries, model_names from utils.ui_helpers import toggle_context_display, update_feedback, get_context_html from utils.leaderboard import load_leaderboard_data, submit_vote_with_elo, generate_leaderboard_html from utils.vote_logger import save_vote_details from utils.shared import generation_interrupt feedback_options = { "left": ["Model A: More complete", "Model A: More accurate", "Model A: More relevant", "Model A: Better written", "Model A: Better refusal (if applicable)"], "right": ["Model B: More complete", "Model B: More accurate", "Model B: More relevant", "Model B: Better written", "Model B: Better refusal (if applicable)"], "tie": ["Model A: Complete", "Model A: Accurate", "Model A: Relevant", "Model A: Well written", "Model A: Correct refusal (if applicable)", "Model B: Complete", "Model B: Accurate", "Model B: Relevant", "Model B: Well written", "Model B: Corrent refusal (if applicable)"], "neither": ["Model A: Incomplete", "Model A: Hallucinate", "Model A: Irrelevant", "Model A: Incorrect refusal (if applicable)", "Model B: Incomplete", "Model B: Hallucinate", "Model B: Irrelevant", "Model B: Incorrect refusal (if applicable)"] } def weighted_sample_without_replacement(population, weights, k=2): """ Performs a weighted random sampling without replacement. Args: population: The list of items to sample from weights: The weight for each item k: Number of items to sample Returns: A list of k sampled items """ if len(population) <= k: return population # Convert weights to numpy array for efficient operations weights = np.array(weights) # Create a copy of the population and weights remaining_population = population.copy() remaining_weights = weights.copy() selected = [] for _ in range(k): # Normalize weights so they sum to 1 normalized_weights = remaining_weights / remaining_weights.sum() # Randomly select one item based on weights selected_idx = np.random.choice(len(remaining_population), p=normalized_weights) # Add the selected item to our result selected.append(remaining_population[selected_idx]) # Remove the selected item from the pool remaining_population.pop(selected_idx) remaining_weights = np.delete(remaining_weights, selected_idx) return selected def load_context(set_interrupt=False): if set_interrupt: generation_interrupt.set() time.sleep(0.2) generation_interrupt.clear() example = get_random_example() context_desc = example.get('processed_context_desc', '') if context_desc: context_desc = f"
The question and context are about: {context_desc}
" show_full = False context_html = get_context_html(example, show_full=show_full) return [ example, gr.update(value=example['question'], elem_classes="query-text"), # Regular query styles gr.update(value=context_desc, visible=bool(context_desc)), gr.update(value=context_html), gr.update(value="Show Full Context", elem_classes=["context-toggle-button"], visible=True), # Ensure toggle is visible show_full ] def toggle_faq(expanded): """Toggle FAQ visibility with proper arrow icons""" new_state = not expanded button_text = "โ–ผ Why can't I upload a file or ask my own question?" if new_state else "โ–ถ Why can't I upload a file or ask my own question?" return new_state, gr.update(visible=new_state), gr.update(value=button_text) # Explicit function to hide the FAQ section completely def hide_faq_section(): """Completely hide the FAQ section and its content""" return gr.update(visible=False), gr.update(visible=False) def load_leaderboard(): results = load_leaderboard_data() leaderboard_html = generate_leaderboard_html(results) return leaderboard_html def generate_model_summaries(example): result = { "model_a": "", "model_b": "", "summary_a": "", "summary_b": "", "completed": False } if generation_interrupt.is_set(): return result try: # Get current leaderboard data to determine model usage counts leaderboard_data = load_leaderboard_data() # Calculate weights using inverse weighting # Weight = K / (games_played + C) K = 100 # Scaling factor C = 5 # Smoothing constant weights = [] model_list = [] for model in model_names: # Get games played for the model, default to 0 if not found games_played = leaderboard_data["games_played"].get(model, 0) # Calculate weight using inverse formula weight = K / (games_played + C) weights.append(weight) model_list.append(model) # Select two models using weighted sampling without replacement selected_models = weighted_sample_without_replacement(model_list, weights, k=2) m_a_name, m_b_name = selected_models result["model_a"] = m_a_name result["model_b"] = m_b_name s_a, s_b = generate_summaries(example, m_a_name, m_b_name) if not generation_interrupt.is_set(): result["summary_a"] = s_a result["summary_b"] = s_b result["completed"] = bool(s_a and s_b) except Exception as e: print(f"Error in generation: {e}") return result def process_generation_result(result): if not result["completed"] or not result["summary_a"] or not result["summary_b"]: return [ result.get("model_a", ""), result.get("model_b", ""), result.get("summary_a", ""), result.get("summary_b", ""), None, [], False, load_leaderboard_data(), gr.update(value=result.get("summary_a", "Generation was interrupted or failed.")), gr.update(value=result.get("summary_b", "Generation was interrupted or failed.")), gr.update(interactive=False, elem_classes=["vote-button"]), gr.update(interactive=False, elem_classes=["vote-button"]), gr.update(interactive=False, elem_classes=["vote-button"]), gr.update(interactive=False, elem_classes=["vote-button", "vote-button-neither"]), gr.update(choices=[], value=[], interactive=False, visible=False), gr.update(visible=False), gr.update(interactive=False, visible=True), gr.update(visible=False), gr.update(interactive=True), gr.update(elem_classes=[]) ] buttons_interactive = bool(result["summary_a"] and result["summary_b"]) agg_results = load_leaderboard_data() return [ result["model_a"], result["model_b"], result["summary_a"], result["summary_b"], None, [], False, agg_results, gr.update(value=result["summary_a"]), gr.update(value=result["summary_b"]), gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]), gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]), gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]), gr.update(interactive=buttons_interactive, elem_classes=["vote-button", "vote-button-neither"]), gr.update(choices=[], value=[], interactive=False, visible=False), gr.update(visible=False), gr.update(interactive=False, visible=True), gr.update(visible=False), gr.update(interactive=True), gr.update(elem_classes=[]) ] def process_example(example): result = generate_model_summaries(example) return process_generation_result(result) def select_vote_improved(winner_choice): feedback_choices = feedback_options.get(winner_choice, []) btn_a_classes = ["vote-button"] btn_b_classes = ["vote-button"] btn_tie_classes = ["vote-button"] btn_neither_classes = ["vote-button", "vote-button-neither"] if winner_choice == 'left': btn_a_classes.append("selected") elif winner_choice == 'right': btn_b_classes.append("selected") elif winner_choice == 'tie': btn_tie_classes.append("selected") elif winner_choice == 'neither': btn_neither_classes.append("selected") return [ winner_choice, gr.update(choices=feedback_choices, value=[], interactive=True, visible=True), gr.update(visible=True), gr.update(interactive=True), gr.update(elem_classes=btn_a_classes), gr.update(elem_classes=btn_b_classes), gr.update(elem_classes=btn_tie_classes), gr.update(elem_classes=btn_neither_classes) ] def handle_vote_submission(example, m_a, m_b, winner, feedback, summary_a, summary_b, current_results): if winner is None: print("Warning: Submit called without a winner selected.") return {} save_vote_details(example, m_a, m_b, winner, feedback, summary_a, summary_b) return submit_vote_with_elo(m_a, m_b, winner, feedback, current_results) def show_loading_state(): """Show loading state while fetching new content and reset UI elements""" return [ gr.update(value="Loading new question and summaries...", interactive=False), gr.update(value="Loading new question and summaries...", interactive=False), gr.update(interactive=False, elem_classes=["vote-button"]), # Reset styling gr.update(interactive=False, elem_classes=["vote-button"]), gr.update(interactive=False, elem_classes=["vote-button"]), gr.update(interactive=False, elem_classes=["vote-button", "vote-button-neither"]), gr.update(visible=False), # feedback_section gr.update(interactive=False), # submit_button gr.update(visible=False), # results_reveal_area gr.update(interactive=False), # random_question_btn None # Reset selected_winner ] def handle_new_example_click(): return load_context(set_interrupt=True)[0] def update_ui_for_new_context(example): context_desc = example.get('processed_context_desc', '') if context_desc: context_desc = f"
The question and context are about: {context_desc}
" return [ gr.update(value=example['question'], elem_classes="query-text"), # Regular query styles gr.update(value=context_desc, visible=bool(context_desc)), gr.update(value=get_context_html(example, False)), gr.update(value="Show Full Context", elem_classes=["context-toggle-button"], visible=True), # Ensure toggle is visible False ] def cleanup_on_disconnect(): print(f"Browser disconnected. Cleaning up resources...") generation_interrupt.set() # Helper functions for showing/hiding UI elements def initialize_empty_app(): return [ gr.update(visible=False), # context_section gr.update(visible=False), # model_section gr.update(visible=False), # voting_section gr.update(visible=False) # submit_button ] def show_all_after_loading(): return [ gr.update(visible=True), # context_section gr.update(visible=True), # model_section gr.update(visible=True), # voting_section gr.update(visible=True), # submit_button gr.update(value="๐Ÿ”„ Try a New Question", elem_classes=["query-button"]) # update button text ] with gr.Blocks(theme=gr.themes.Default( primary_hue=gr.themes.colors.orange, secondary_hue=gr.themes.colors.slate )) as demo: css_path = os.path.join(os.getcwd(), 'static', 'styles.css') with open(css_path, 'r') as f: css_content = f.read() gr.HTML(f"") unload_js = """ """ gr.HTML(unload_js) # State variables current_example = gr.State({}) model_a_name = gr.State("") model_b_name = gr.State("") summary_a_text = gr.State("") summary_b_text = gr.State("") selected_winner = gr.State(None) feedback_list = gr.State([]) show_results_state = gr.State(False) results_agg = gr.State(load_leaderboard_data()) show_full_context = gr.State(False) faq_expanded = gr.State(False) # State for FAQ toggle with gr.Tabs() as tabs: with gr.TabItem("Arena", id="arena-tab"): gr.Markdown("# Small Language Model RAG Arena") gr.Markdown(""" ๐ŸŸ๏ธ This arena evaluates how well SLMs (under 5B) answer questions based on document contexts. ๐Ÿ“ Instructions๏ผš - **Click the "Get a Question" button** to load a random question with context - **Review the query and context** to understand the information provided to the models - **Compare answers** generated by two different models on answer quality or appropriate refusal - **Cast your vote** for the better response, or select 'Tie' if equally good or 'Neither' if both are inadequate """) gr.Markdown("---") with gr.Column(elem_id="main-interface-area") as main_interface_area: with gr.Row(elem_id="query-title-row"): gr.Markdown("### ๐Ÿ’ฌ Query - Question About Document Content", elem_classes="section-heading") with gr.Row(elem_id="query-container"): with gr.Row(elem_classes="query-box-row"): query_display = gr.Markdown(value="Click \"Get a Question\" to start", elem_classes=["query-text", "empty-query"], elem_id="query-section") random_question_btn = gr.Button("๐Ÿ’ก Get a Question", elem_classes=["query-button", "initial-button"]) # Add the FAQ toggle and content here with gr.Row(visible=True, elem_id="faq-container") as faq_container: faq_toggle_btn = gr.Button("โ–ถ Why can't I upload a file or ask my own question?", elem_classes=["faq-toggle-button"]) # FAQ Content - initially hidden with gr.Row(visible=False, elem_id="faq-content") as faq_content: gr.Markdown(""" This arena tests how well different AI models summarize information using standardized questions and contexts. All models see the exact same inputs for fair comparison. We don't allow file uploads here as that would change what we're measuring. Instead, check our leaderboard to find top-performing models for your needs. We'll soon launch a separate playground where you can test models with your own files. """, elem_classes="faq-text") context_description = gr.Markdown("", elem_classes="context-description") # Create a section container for all context-related elements - INITIALLY HIDDEN with gr.Column(visible=False, elem_id="context-section") as context_section: context_divider = gr.HTML("
", elem_id="context-divider") with gr.Row(elem_id="context-header-row"): gr.Markdown("### ๐Ÿ“‹ Context - Retrieved Content from the Document", elem_classes="context-title") context_toggle_btn = gr.Button("Show Full Context", elem_classes=["context-toggle-button"]) context_display = gr.HTML(value="", label="Context Chunks") # Model comparison section - initially hidden with gr.Column(visible=False, elem_id="model-section") as model_section: gr.Markdown("---") gr.Markdown("### ๐Ÿ” Compare Models - Are these Grounded, Complete Answers or Correct Rejections?", elem_classes="section-heading") with gr.Row(elem_id="summary-containers"): with gr.Column(scale=1): with gr.Group(elem_classes=["summary-card", "summary-card-a"]): summary_a_display = gr.Textbox( label="Model A", lines=10, interactive=False, show_copy_button=True, autoscroll=False, elem_id="summary-a-display" ) with gr.Column(scale=1): with gr.Group(elem_classes=["summary-card", "summary-card-b"]): summary_b_display = gr.Textbox( label="Model B", lines=10, interactive=False, show_copy_button=True, autoscroll=False, elem_id="summary-b-display" ) # Voting section - initially hidden with gr.Column(visible=False, elem_id="voting-section") as voting_section: gr.HTML("
") gr.Markdown("### ๐Ÿ… Cast Your Vote", elem_classes="section-heading") with gr.Row(): vote_button_a = gr.Button("โฌ…๏ธ Summary A is Better", elem_classes=["vote-button"], interactive=False) vote_button_tie = gr.Button("๐Ÿค Tie / Equally Good", elem_classes=["vote-button"], interactive=False) vote_button_b = gr.Button("โžก๏ธ Summary B is Better", elem_classes=["vote-button"], interactive=False) vote_button_neither = gr.Button("โŒ Neither is Good", elem_classes=["vote-button", "vote-button-neither"], interactive=False) with gr.Group(elem_classes=["feedback-section"], visible=False) as feedback_section: feedback_checkboxes = gr.CheckboxGroup(label="Feedback (optional)", choices=[], interactive=False) # Submit button - initially hidden submit_button = gr.Button("Submit Your Vote", variant="primary", interactive=False, elem_id="submit-button", visible=False) with gr.Column(visible=False) as results_reveal_area: gr.Markdown("---") gr.Markdown("### โœ… Vote Submitted!", elem_classes="section-heading") with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Model A was:", elem_classes="section-heading") model_a_reveal = gr.Markdown("", elem_classes="model-reveal model-a-reveal") with gr.Column(scale=1): gr.Markdown("### Model B was:", elem_classes="section-heading") model_b_reveal = gr.Markdown("", elem_classes="model-reveal model-b-reveal") gr.HTML("
") with gr.Row(elem_classes=["control-buttons"]): try_another_btn = gr.Button("๐Ÿ”„ Try Another Question", elem_id="try-another-btn") with gr.TabItem("Leaderboard", id="leaderboard-tab"): gr.Markdown("# SLM RAG Leaderboard", elem_classes="orange-title") gr.Markdown("View performance statistics for all models ranked by Elo rating.") with gr.Group(elem_id="leaderboard-info"): gr.Markdown("""### About Elo Ratings The Elo rating system provides a more accurate ranking than simple win rates: - All models start at 1500 points - Points are exchanged after each comparison based on the expected outcome - Beating a stronger model earns more points than beating a weaker one - The ยฑ value shows the statistical confidence interval (95%) """) results_table_display = gr.HTML(label="Model Performance") # FAQ toggle functionality with icon change faq_toggle_btn.click( fn=toggle_faq, inputs=[faq_expanded], outputs=[faq_expanded, faq_content, faq_toggle_btn] ) # Context toggle functionality context_toggle_btn.click( fn=toggle_context_display, inputs=[current_example, show_full_context], outputs=[show_full_context, context_display, context_toggle_btn] ) # Initialize UI to empty state on load demo.load( fn=initialize_empty_app, inputs=[], outputs=[ context_section, model_section, voting_section, submit_button ] ) # Load leaderboard on start demo.load( fn=load_leaderboard, inputs=[], outputs=[results_table_display] ) # Getting a new question random_question_btn.click( fn=show_loading_state, inputs=[], outputs=[ summary_a_display, summary_b_display, vote_button_a, vote_button_b, vote_button_tie, vote_button_neither, feedback_section, submit_button, results_reveal_area, random_question_btn, selected_winner ] ).then( fn=handle_new_example_click, inputs=[], outputs=[current_example] ).then( fn=update_ui_for_new_context, inputs=[current_example], outputs=[query_display, context_description, context_display, context_toggle_btn, show_full_context] ).then( # IMPORTANT: Explicitly hide FAQ here fn=hide_faq_section, inputs=[], outputs=[faq_container, faq_content] ).then( fn=show_all_after_loading, inputs=[], outputs=[ context_section, model_section, voting_section, submit_button, random_question_btn ] ).then( fn=process_example, inputs=[current_example], outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text, selected_winner, feedback_list, show_results_state, results_agg, summary_a_display, summary_b_display, vote_button_a, vote_button_b, vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section, submit_button, results_reveal_area, random_question_btn, main_interface_area] ) # Try another question try_another_btn.click( fn=show_loading_state, inputs=[], outputs=[ summary_a_display, summary_b_display, vote_button_a, vote_button_b, vote_button_tie, vote_button_neither, feedback_section, submit_button, results_reveal_area, random_question_btn, selected_winner ] ).then( fn=handle_new_example_click, inputs=[], outputs=[current_example] ).then( fn=update_ui_for_new_context, inputs=[current_example], outputs=[query_display, context_description, context_display, context_toggle_btn, show_full_context] ).then( # IMPORTANT: Explicitly hide FAQ here too fn=hide_faq_section, inputs=[], outputs=[faq_container, faq_content] ).then( fn=show_all_after_loading, inputs=[], outputs=[ context_section, model_section, voting_section, submit_button, random_question_btn ] ).then( fn=process_example, inputs=[current_example], outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text, selected_winner, feedback_list, show_results_state, results_agg, summary_a_display, summary_b_display, vote_button_a, vote_button_b, vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section, submit_button, results_reveal_area, random_question_btn, main_interface_area] ) # Vote button handling for btn, choice in zip( [vote_button_a, vote_button_b, vote_button_tie, vote_button_neither], ['left', 'right', 'tie', 'neither'] ): btn.click( fn=lambda choice=choice: select_vote_improved(choice), inputs=None, outputs=[selected_winner, feedback_checkboxes, feedback_section, submit_button, vote_button_a, vote_button_b, vote_button_tie, vote_button_neither] ) feedback_checkboxes.change( fn=update_feedback, inputs=[feedback_checkboxes], outputs=[feedback_list] ) submit_button.click( fn=handle_vote_submission, inputs=[current_example, model_a_name, model_b_name, selected_winner, feedback_list, summary_a_text, summary_b_text, results_agg], outputs=[show_results_state, results_agg, vote_button_a, vote_button_b, vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section, submit_button, results_reveal_area, random_question_btn, results_table_display, main_interface_area, context_toggle_btn, model_a_reveal, model_b_reveal] ) tabs.select( fn=load_leaderboard, inputs=[], outputs=[results_table_display], api_name="refresh_leaderboard" ) demo.unload(cleanup_on_disconnect) if __name__ == "__main__": demo.launch(debug=True)