import gradio as gr
import random
import pandas as pd
import os
import threading
import time
import numpy as np
from utils.data_loader import get_random_example
from utils.models import generate_summaries, model_names
from utils.ui_helpers import toggle_context_display, update_feedback, get_context_html
from utils.leaderboard import load_leaderboard_data, submit_vote_with_elo, generate_leaderboard_html
from utils.vote_logger import save_vote_details
from utils.shared import generation_interrupt
feedback_options = {
"left": ["Model A: More complete", "Model A: More accurate", "Model A: More relevant", "Model A: Better written", "Model A: Better refusal (if applicable)"],
"right": ["Model B: More complete", "Model B: More accurate", "Model B: More relevant", "Model B: Better written", "Model B: Better refusal (if applicable)"],
"tie": ["Model A: Complete", "Model A: Accurate", "Model A: Relevant", "Model A: Well written", "Model A: Correct refusal (if applicable)",
"Model B: Complete", "Model B: Accurate", "Model B: Relevant", "Model B: Well written", "Model B: Corrent refusal (if applicable)"],
"neither": ["Model A: Incomplete", "Model A: Hallucinate", "Model A: Irrelevant", "Model A: Incorrect refusal (if applicable)",
"Model B: Incomplete", "Model B: Hallucinate", "Model B: Irrelevant", "Model B: Incorrect refusal (if applicable)"]
}
def weighted_sample_without_replacement(population, weights, k=2):
"""
Performs a weighted random sampling without replacement.
Args:
population: The list of items to sample from
weights: The weight for each item
k: Number of items to sample
Returns:
A list of k sampled items
"""
if len(population) <= k:
return population
# Convert weights to numpy array for efficient operations
weights = np.array(weights)
# Create a copy of the population and weights
remaining_population = population.copy()
remaining_weights = weights.copy()
selected = []
for _ in range(k):
# Normalize weights so they sum to 1
normalized_weights = remaining_weights / remaining_weights.sum()
# Randomly select one item based on weights
selected_idx = np.random.choice(len(remaining_population), p=normalized_weights)
# Add the selected item to our result
selected.append(remaining_population[selected_idx])
# Remove the selected item from the pool
remaining_population.pop(selected_idx)
remaining_weights = np.delete(remaining_weights, selected_idx)
return selected
def load_context(set_interrupt=False):
if set_interrupt:
generation_interrupt.set()
time.sleep(0.2)
generation_interrupt.clear()
example = get_random_example()
context_desc = example.get('processed_context_desc', '')
if context_desc:
context_desc = f"
The question and context are about: {context_desc}
"
show_full = False
context_html = get_context_html(example, show_full=show_full)
return [
example,
gr.update(value=example['question'], elem_classes="query-text"), # Regular query styles
gr.update(value=context_desc, visible=bool(context_desc)),
gr.update(value=context_html),
gr.update(value="Show Full Context", elem_classes=["context-toggle-button"], visible=True), # Ensure toggle is visible
show_full
]
def toggle_faq(expanded):
"""Toggle FAQ visibility with proper arrow icons"""
new_state = not expanded
button_text = "โผ Why can't I upload a file or ask my own question?" if new_state else "โถ Why can't I upload a file or ask my own question?"
return new_state, gr.update(visible=new_state), gr.update(value=button_text)
# Explicit function to hide the FAQ section completely
def hide_faq_section():
"""Completely hide the FAQ section and its content"""
return gr.update(visible=False), gr.update(visible=False)
def load_leaderboard():
results = load_leaderboard_data()
leaderboard_html = generate_leaderboard_html(results)
return leaderboard_html
def generate_model_summaries(example):
result = {
"model_a": "",
"model_b": "",
"summary_a": "",
"summary_b": "",
"completed": False
}
if generation_interrupt.is_set():
return result
try:
# Get current leaderboard data to determine model usage counts
leaderboard_data = load_leaderboard_data()
# Calculate weights using inverse weighting
# Weight = K / (games_played + C)
K = 100 # Scaling factor
C = 5 # Smoothing constant
weights = []
model_list = []
for model in model_names:
# Get games played for the model, default to 0 if not found
games_played = leaderboard_data["games_played"].get(model, 0)
# Calculate weight using inverse formula
weight = K / (games_played + C)
weights.append(weight)
model_list.append(model)
# Select two models using weighted sampling without replacement
selected_models = weighted_sample_without_replacement(model_list, weights, k=2)
m_a_name, m_b_name = selected_models
result["model_a"] = m_a_name
result["model_b"] = m_b_name
s_a, s_b = generate_summaries(example, m_a_name, m_b_name)
if not generation_interrupt.is_set():
result["summary_a"] = s_a
result["summary_b"] = s_b
result["completed"] = bool(s_a and s_b)
except Exception as e:
print(f"Error in generation: {e}")
return result
def process_generation_result(result):
if not result["completed"] or not result["summary_a"] or not result["summary_b"]:
return [
result.get("model_a", ""),
result.get("model_b", ""),
result.get("summary_a", ""),
result.get("summary_b", ""),
None, [], False, load_leaderboard_data(),
gr.update(value=result.get("summary_a", "Generation was interrupted or failed.")),
gr.update(value=result.get("summary_b", "Generation was interrupted or failed.")),
gr.update(interactive=False, elem_classes=["vote-button"]),
gr.update(interactive=False, elem_classes=["vote-button"]),
gr.update(interactive=False, elem_classes=["vote-button"]),
gr.update(interactive=False, elem_classes=["vote-button", "vote-button-neither"]),
gr.update(choices=[], value=[], interactive=False, visible=False),
gr.update(visible=False),
gr.update(interactive=False, visible=True),
gr.update(visible=False),
gr.update(interactive=True),
gr.update(elem_classes=[])
]
buttons_interactive = bool(result["summary_a"] and result["summary_b"])
agg_results = load_leaderboard_data()
return [
result["model_a"], result["model_b"],
result["summary_a"], result["summary_b"],
None, [], False, agg_results,
gr.update(value=result["summary_a"]),
gr.update(value=result["summary_b"]),
gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]),
gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]),
gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]),
gr.update(interactive=buttons_interactive, elem_classes=["vote-button", "vote-button-neither"]),
gr.update(choices=[], value=[], interactive=False, visible=False),
gr.update(visible=False),
gr.update(interactive=False, visible=True),
gr.update(visible=False),
gr.update(interactive=True),
gr.update(elem_classes=[])
]
def process_example(example):
result = generate_model_summaries(example)
return process_generation_result(result)
def select_vote_improved(winner_choice):
feedback_choices = feedback_options.get(winner_choice, [])
btn_a_classes = ["vote-button"]
btn_b_classes = ["vote-button"]
btn_tie_classes = ["vote-button"]
btn_neither_classes = ["vote-button", "vote-button-neither"]
if winner_choice == 'left':
btn_a_classes.append("selected")
elif winner_choice == 'right':
btn_b_classes.append("selected")
elif winner_choice == 'tie':
btn_tie_classes.append("selected")
elif winner_choice == 'neither':
btn_neither_classes.append("selected")
return [
winner_choice,
gr.update(choices=feedback_choices, value=[], interactive=True, visible=True),
gr.update(visible=True),
gr.update(interactive=True),
gr.update(elem_classes=btn_a_classes),
gr.update(elem_classes=btn_b_classes),
gr.update(elem_classes=btn_tie_classes),
gr.update(elem_classes=btn_neither_classes)
]
def handle_vote_submission(example, m_a, m_b, winner, feedback, summary_a, summary_b, current_results):
if winner is None:
print("Warning: Submit called without a winner selected.")
return {}
save_vote_details(example, m_a, m_b, winner, feedback, summary_a, summary_b)
return submit_vote_with_elo(m_a, m_b, winner, feedback, current_results)
def show_loading_state():
"""Show loading state while fetching new content and reset UI elements"""
return [
gr.update(value="Loading new question and summaries...", interactive=False),
gr.update(value="Loading new question and summaries...", interactive=False),
gr.update(interactive=False, elem_classes=["vote-button"]), # Reset styling
gr.update(interactive=False, elem_classes=["vote-button"]),
gr.update(interactive=False, elem_classes=["vote-button"]),
gr.update(interactive=False, elem_classes=["vote-button", "vote-button-neither"]),
gr.update(visible=False), # feedback_section
gr.update(interactive=False), # submit_button
gr.update(visible=False), # results_reveal_area
gr.update(interactive=False), # random_question_btn
None # Reset selected_winner
]
def handle_new_example_click():
return load_context(set_interrupt=True)[0]
def update_ui_for_new_context(example):
context_desc = example.get('processed_context_desc', '')
if context_desc:
context_desc = f"The question and context are about: {context_desc}
"
return [
gr.update(value=example['question'], elem_classes="query-text"), # Regular query styles
gr.update(value=context_desc, visible=bool(context_desc)),
gr.update(value=get_context_html(example, False)),
gr.update(value="Show Full Context", elem_classes=["context-toggle-button"], visible=True), # Ensure toggle is visible
False
]
def cleanup_on_disconnect():
print(f"Browser disconnected. Cleaning up resources...")
generation_interrupt.set()
# Helper functions for showing/hiding UI elements
def initialize_empty_app():
return [
gr.update(visible=False), # context_section
gr.update(visible=False), # model_section
gr.update(visible=False), # voting_section
gr.update(visible=False) # submit_button
]
def show_all_after_loading():
return [
gr.update(visible=True), # context_section
gr.update(visible=True), # model_section
gr.update(visible=True), # voting_section
gr.update(visible=True), # submit_button
gr.update(value="๐ Try a New Question", elem_classes=["query-button"]) # update button text
]
with gr.Blocks(theme=gr.themes.Default(
primary_hue=gr.themes.colors.orange,
secondary_hue=gr.themes.colors.slate
)) as demo:
css_path = os.path.join(os.getcwd(), 'static', 'styles.css')
with open(css_path, 'r') as f:
css_content = f.read()
gr.HTML(f"")
unload_js = """
"""
gr.HTML(unload_js)
# State variables
current_example = gr.State({})
model_a_name = gr.State("")
model_b_name = gr.State("")
summary_a_text = gr.State("")
summary_b_text = gr.State("")
selected_winner = gr.State(None)
feedback_list = gr.State([])
show_results_state = gr.State(False)
results_agg = gr.State(load_leaderboard_data())
show_full_context = gr.State(False)
faq_expanded = gr.State(False) # State for FAQ toggle
with gr.Tabs() as tabs:
with gr.TabItem("Arena", id="arena-tab"):
gr.Markdown("# Small Language Model RAG Arena")
gr.Markdown("""
๐๏ธ This arena evaluates how well SLMs (under 5B) answer questions based on document contexts.
๐ Instructions๏ผ
- **Click the "Get a Question" button** to load a random question with context
- **Review the query and context** to understand the information provided to the models
- **Compare answers** generated by two different models on answer quality or appropriate refusal
- **Cast your vote** for the better response, or select 'Tie' if equally good or 'Neither' if both are inadequate
""")
gr.Markdown("---")
with gr.Column(elem_id="main-interface-area") as main_interface_area:
with gr.Row(elem_id="query-title-row"):
gr.Markdown("### ๐ฌ Query - Question About Document Content", elem_classes="section-heading")
with gr.Row(elem_id="query-container"):
with gr.Row(elem_classes="query-box-row"):
query_display = gr.Markdown(value="Click \"Get a Question\" to start", elem_classes=["query-text", "empty-query"], elem_id="query-section")
random_question_btn = gr.Button("๐ก Get a Question", elem_classes=["query-button", "initial-button"])
# Add the FAQ toggle and content here
with gr.Row(visible=True, elem_id="faq-container") as faq_container:
faq_toggle_btn = gr.Button("โถ Why can't I upload a file or ask my own question?", elem_classes=["faq-toggle-button"])
# FAQ Content - initially hidden
with gr.Row(visible=False, elem_id="faq-content") as faq_content:
gr.Markdown("""
This arena tests how well different AI models summarize information using standardized questions and contexts. All models see the exact same inputs for fair comparison.
We don't allow file uploads here as that would change what we're measuring. Instead, check our leaderboard to find top-performing models for your needs. We'll soon launch a separate playground where you can test models with your own files.
""", elem_classes="faq-text")
context_description = gr.Markdown("", elem_classes="context-description")
# Create a section container for all context-related elements - INITIALLY HIDDEN
with gr.Column(visible=False, elem_id="context-section") as context_section:
context_divider = gr.HTML("
", elem_id="context-divider")
with gr.Row(elem_id="context-header-row"):
gr.Markdown("### ๐ Context - Retrieved Content from the Document", elem_classes="context-title")
context_toggle_btn = gr.Button("Show Full Context", elem_classes=["context-toggle-button"])
context_display = gr.HTML(value="", label="Context Chunks")
# Model comparison section - initially hidden
with gr.Column(visible=False, elem_id="model-section") as model_section:
gr.Markdown("---")
gr.Markdown("### ๐ Compare Models - Are these Grounded, Complete Answers or Correct Rejections?", elem_classes="section-heading")
with gr.Row(elem_id="summary-containers"):
with gr.Column(scale=1):
with gr.Group(elem_classes=["summary-card", "summary-card-a"]):
summary_a_display = gr.Textbox(
label="Model A",
lines=10,
interactive=False,
show_copy_button=True,
autoscroll=False,
elem_id="summary-a-display"
)
with gr.Column(scale=1):
with gr.Group(elem_classes=["summary-card", "summary-card-b"]):
summary_b_display = gr.Textbox(
label="Model B",
lines=10,
interactive=False,
show_copy_button=True,
autoscroll=False,
elem_id="summary-b-display"
)
# Voting section - initially hidden
with gr.Column(visible=False, elem_id="voting-section") as voting_section:
gr.HTML("
")
gr.Markdown("### ๐
Cast Your Vote", elem_classes="section-heading")
with gr.Row():
vote_button_a = gr.Button("โฌ
๏ธ Summary A is Better", elem_classes=["vote-button"], interactive=False)
vote_button_tie = gr.Button("๐ค Tie / Equally Good", elem_classes=["vote-button"], interactive=False)
vote_button_b = gr.Button("โก๏ธ Summary B is Better", elem_classes=["vote-button"], interactive=False)
vote_button_neither = gr.Button("โ Neither is Good", elem_classes=["vote-button", "vote-button-neither"], interactive=False)
with gr.Group(elem_classes=["feedback-section"], visible=False) as feedback_section:
feedback_checkboxes = gr.CheckboxGroup(label="Feedback (optional)", choices=[], interactive=False)
# Submit button - initially hidden
submit_button = gr.Button("Submit Your Vote", variant="primary", interactive=False, elem_id="submit-button", visible=False)
with gr.Column(visible=False) as results_reveal_area:
gr.Markdown("---")
gr.Markdown("### โ
Vote Submitted!", elem_classes="section-heading")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Model A was:", elem_classes="section-heading")
model_a_reveal = gr.Markdown("", elem_classes="model-reveal model-a-reveal")
with gr.Column(scale=1):
gr.Markdown("### Model B was:", elem_classes="section-heading")
model_b_reveal = gr.Markdown("", elem_classes="model-reveal model-b-reveal")
gr.HTML("
")
with gr.Row(elem_classes=["control-buttons"]):
try_another_btn = gr.Button("๐ Try Another Question", elem_id="try-another-btn")
with gr.TabItem("Leaderboard", id="leaderboard-tab"):
gr.Markdown("# SLM RAG Leaderboard", elem_classes="orange-title")
gr.Markdown("View performance statistics for all models ranked by Elo rating.")
with gr.Group(elem_id="leaderboard-info"):
gr.Markdown("""### About Elo Ratings
The Elo rating system provides a more accurate ranking than simple win rates:
- All models start at 1500 points
- Points are exchanged after each comparison based on the expected outcome
- Beating a stronger model earns more points than beating a weaker one
- The ยฑ value shows the statistical confidence interval (95%)
""")
results_table_display = gr.HTML(label="Model Performance")
# FAQ toggle functionality with icon change
faq_toggle_btn.click(
fn=toggle_faq,
inputs=[faq_expanded],
outputs=[faq_expanded, faq_content, faq_toggle_btn]
)
# Context toggle functionality
context_toggle_btn.click(
fn=toggle_context_display,
inputs=[current_example, show_full_context],
outputs=[show_full_context, context_display, context_toggle_btn]
)
# Initialize UI to empty state on load
demo.load(
fn=initialize_empty_app,
inputs=[],
outputs=[
context_section,
model_section,
voting_section,
submit_button
]
)
# Load leaderboard on start
demo.load(
fn=load_leaderboard,
inputs=[],
outputs=[results_table_display]
)
# Getting a new question
random_question_btn.click(
fn=show_loading_state,
inputs=[],
outputs=[
summary_a_display, summary_b_display,
vote_button_a, vote_button_b, vote_button_tie, vote_button_neither,
feedback_section, submit_button, results_reveal_area, random_question_btn,
selected_winner
]
).then(
fn=handle_new_example_click,
inputs=[],
outputs=[current_example]
).then(
fn=update_ui_for_new_context,
inputs=[current_example],
outputs=[query_display, context_description, context_display,
context_toggle_btn, show_full_context]
).then(
# IMPORTANT: Explicitly hide FAQ here
fn=hide_faq_section,
inputs=[],
outputs=[faq_container, faq_content]
).then(
fn=show_all_after_loading,
inputs=[],
outputs=[
context_section,
model_section,
voting_section,
submit_button,
random_question_btn
]
).then(
fn=process_example,
inputs=[current_example],
outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text,
selected_winner, feedback_list, show_results_state, results_agg,
summary_a_display, summary_b_display, vote_button_a, vote_button_b,
vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section,
submit_button, results_reveal_area, random_question_btn, main_interface_area]
)
# Try another question
try_another_btn.click(
fn=show_loading_state,
inputs=[],
outputs=[
summary_a_display, summary_b_display,
vote_button_a, vote_button_b, vote_button_tie, vote_button_neither,
feedback_section, submit_button, results_reveal_area, random_question_btn,
selected_winner
]
).then(
fn=handle_new_example_click,
inputs=[],
outputs=[current_example]
).then(
fn=update_ui_for_new_context,
inputs=[current_example],
outputs=[query_display, context_description, context_display,
context_toggle_btn, show_full_context]
).then(
# IMPORTANT: Explicitly hide FAQ here too
fn=hide_faq_section,
inputs=[],
outputs=[faq_container, faq_content]
).then(
fn=show_all_after_loading,
inputs=[],
outputs=[
context_section,
model_section,
voting_section,
submit_button,
random_question_btn
]
).then(
fn=process_example,
inputs=[current_example],
outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text,
selected_winner, feedback_list, show_results_state, results_agg,
summary_a_display, summary_b_display, vote_button_a, vote_button_b,
vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section,
submit_button, results_reveal_area, random_question_btn, main_interface_area]
)
# Vote button handling
for btn, choice in zip(
[vote_button_a, vote_button_b, vote_button_tie, vote_button_neither],
['left', 'right', 'tie', 'neither']
):
btn.click(
fn=lambda choice=choice: select_vote_improved(choice),
inputs=None,
outputs=[selected_winner, feedback_checkboxes, feedback_section, submit_button,
vote_button_a, vote_button_b, vote_button_tie, vote_button_neither]
)
feedback_checkboxes.change(
fn=update_feedback,
inputs=[feedback_checkboxes],
outputs=[feedback_list]
)
submit_button.click(
fn=handle_vote_submission,
inputs=[current_example, model_a_name, model_b_name, selected_winner, feedback_list, summary_a_text, summary_b_text, results_agg],
outputs=[show_results_state, results_agg, vote_button_a, vote_button_b,
vote_button_tie, vote_button_neither, feedback_checkboxes,
feedback_section, submit_button, results_reveal_area,
random_question_btn, results_table_display, main_interface_area,
context_toggle_btn, model_a_reveal, model_b_reveal]
)
tabs.select(
fn=load_leaderboard,
inputs=[],
outputs=[results_table_display],
api_name="refresh_leaderboard"
)
demo.unload(cleanup_on_disconnect)
if __name__ == "__main__":
demo.launch(debug=True)