Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +159 -0
- model_download_py.py +15 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Assignment-2-IT164_ajchri5
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1RtE7mmtyUWwiuowgyQq4eCuH-ep_D1QQ
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
# mount gd
|
| 11 |
+
from google.colab import drive
|
| 12 |
+
drive.mount('/content/drive')
|
| 13 |
+
|
| 14 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 15 |
+
# # token
|
| 16 |
+
# %%capture
|
| 17 |
+
# from google.colab import userdata
|
| 18 |
+
# hftoken=userdata.get('hftoken')
|
| 19 |
+
|
| 20 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 21 |
+
# # pi
|
| 22 |
+
# %%capture
|
| 23 |
+
# !pip install gradio
|
| 24 |
+
# !pip install huggingface_hub
|
| 25 |
+
|
| 26 |
+
# packages required for colab
|
| 27 |
+
!pip install gradio
|
| 28 |
+
!pip install transformers
|
| 29 |
+
!pip install torchaudio
|
| 30 |
+
!pip install fasttext
|
| 31 |
+
|
| 32 |
+
# fastText for language detection
|
| 33 |
+
!wget https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin
|
| 34 |
+
|
| 35 |
+
# imports required for colab
|
| 36 |
+
import gradio as gr
|
| 37 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration, pipeline, EncoderDecoderCache
|
| 38 |
+
import torchaudio
|
| 39 |
+
import warnings
|
| 40 |
+
import fasttext
|
| 41 |
+
import pandas as pd
|
| 42 |
+
import csv
|
| 43 |
+
import os
|
| 44 |
+
|
| 45 |
+
# hides warnings with pysoundfile
|
| 46 |
+
warnings.filterwarnings("ignore", category=UserWarning, message="PySoundFile failed.*")
|
| 47 |
+
|
| 48 |
+
# load model 1 transcription
|
| 49 |
+
whisper_model_name = "openai/whisper-large"
|
| 50 |
+
processor = WhisperProcessor.from_pretrained(whisper_model_name)
|
| 51 |
+
whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name)
|
| 52 |
+
|
| 53 |
+
# load model 2 translation
|
| 54 |
+
translation_model = pipeline("translation", model="Helsinki-NLP/opus-mt-ROMANCE-en")
|
| 55 |
+
|
| 56 |
+
# load additional model 3 language detection
|
| 57 |
+
lang_model = fasttext.load_model('lid.176.bin') # pre-trained model
|
| 58 |
+
|
| 59 |
+
# app usage history
|
| 60 |
+
history_data = []
|
| 61 |
+
|
| 62 |
+
# save data csv
|
| 63 |
+
def saveData(text, language, translated_text, confidence_score):
|
| 64 |
+
# gd path
|
| 65 |
+
file_path = '/content/drive/MyDrive/IT164/a2prompt.csv'
|
| 66 |
+
|
| 67 |
+
# check if file exists, if not make new one with headers
|
| 68 |
+
file_exists = os.path.isfile(file_path)
|
| 69 |
+
|
| 70 |
+
# open csv file to append data
|
| 71 |
+
with open(file_path, 'a', newline='', encoding='utf-8') as f:
|
| 72 |
+
w = csv.writer(f)
|
| 73 |
+
if not file_exists:
|
| 74 |
+
# write header if file is created
|
| 75 |
+
w.writerow(['Text', 'Language', 'Translation', 'Confidence Score'])
|
| 76 |
+
# write new data row
|
| 77 |
+
w.writerow([text, language, translated_text, confidence_score])
|
| 78 |
+
|
| 79 |
+
# load audio input and transcribe
|
| 80 |
+
def transcribe_audio(audio_file, sampling_rate=48000): # set to 48 kHz
|
| 81 |
+
# load audio file with torchaudio
|
| 82 |
+
waveform, sr = torchaudio.load(audio_file, normalize=True)
|
| 83 |
+
|
| 84 |
+
# max 16kHz (resample)
|
| 85 |
+
if sr != 16000:
|
| 86 |
+
transform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=16000) # resample to 16 kHz
|
| 87 |
+
waveform = transform(waveform)
|
| 88 |
+
sr = 16000 # update as 16 kHz
|
| 89 |
+
|
| 90 |
+
# whisperprocessor
|
| 91 |
+
inputs = processor(waveform.squeeze(0).numpy(), return_tensors="pt", sampling_rate=sr)
|
| 92 |
+
|
| 93 |
+
# generate transcription and handle "past_key_values deprecation" error
|
| 94 |
+
past_key_values = None
|
| 95 |
+
generated_ids = whisper_model.generate(
|
| 96 |
+
inputs["input_features"],
|
| 97 |
+
past_key_values=past_key_values
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# encoderdecodercache (to handle past_key_values)
|
| 101 |
+
if past_key_values is not None:
|
| 102 |
+
past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values)
|
| 103 |
+
|
| 104 |
+
return processor.decode(generated_ids[0], skip_special_tokens=True)
|
| 105 |
+
|
| 106 |
+
# detect language using fastText
|
| 107 |
+
def detect_language(text):
|
| 108 |
+
result = lang_model.predict(text) # predict language with fasttext
|
| 109 |
+
language = result[0][0].replace('__label__', '') # extract the predicted language label
|
| 110 |
+
score = result[1][0] # confidence score
|
| 111 |
+
return language, score
|
| 112 |
+
|
| 113 |
+
# translate text (to english)
|
| 114 |
+
def translate_text_to_english(text, source_lang="fr"):
|
| 115 |
+
# translate detected language
|
| 116 |
+
translation = translation_model(text, src_lang=source_lang, tgt_lang="en")
|
| 117 |
+
return translation[0]['translation_text']
|
| 118 |
+
|
| 119 |
+
# function to track history (save results to the list and save to csv)
|
| 120 |
+
def save_to_history(text, language, translation, confidence_score):
|
| 121 |
+
history_data.append([text, language, translation, confidence_score])
|
| 122 |
+
# save csv
|
| 123 |
+
saveData(text, language, translation, confidence_score)
|
| 124 |
+
|
| 125 |
+
# process audio, transcribe, detect language, and translate
|
| 126 |
+
def process_audio(audio_file):
|
| 127 |
+
transcription = transcribe_audio(audio_file, sampling_rate=48000) # use 48 kHz initially (mac rate)
|
| 128 |
+
language, score = detect_language(transcription) # detect language of the transcription
|
| 129 |
+
translated_text = translate_text_to_english(transcription, source_lang=language) # translate
|
| 130 |
+
save_to_history(transcription, language, translated_text, score) # save results
|
| 131 |
+
return transcription, language, score, translated_text
|
| 132 |
+
|
| 133 |
+
# update visibility of the history table in gradio
|
| 134 |
+
def update_vis(radio_value):
|
| 135 |
+
if radio_value == 'show':
|
| 136 |
+
return gr.DataFrame(pd.DataFrame(history_data, columns=["Text", "Language", "Translation", "Confidence Score"]), visible=True)
|
| 137 |
+
else:
|
| 138 |
+
return gr.DataFrame(pd.DataFrame(history_data, columns=["Text", "Language", "Translation", "Confidence Score"]), visible=False)
|
| 139 |
+
|
| 140 |
+
# gradio interface
|
| 141 |
+
with gr.Blocks() as demo:
|
| 142 |
+
with gr.Row():
|
| 143 |
+
with gr.Column():
|
| 144 |
+
audio_input = gr.Audio(label="Record your voice", type="filepath") # audio input
|
| 145 |
+
transcription_output = gr.Textbox(label="Transcription") # transcription output
|
| 146 |
+
language_output = gr.Textbox(label="Detected Language") # detected language output
|
| 147 |
+
score_output = gr.Textbox(label="Confidence Score") # confidence score output
|
| 148 |
+
translated_output = gr.Textbox(label="Translated Text to English") # translated text output
|
| 149 |
+
process_button = gr.Button("Process Audio") # button to process the audio
|
| 150 |
+
|
| 151 |
+
with gr.Column():
|
| 152 |
+
history = gr.Radio(['show', 'hide'], label="App usage history") # "show" or "hide" (history)
|
| 153 |
+
dataframe = gr.DataFrame(pd.DataFrame(history_data, columns=["Text", "Language", "Translation", "Confidence Score"]), visible=False)
|
| 154 |
+
|
| 155 |
+
# button click (process audio and display output)
|
| 156 |
+
process_button.click(fn=process_audio, inputs=[audio_input], outputs=[transcription_output, language_output, score_output, translated_output])
|
| 157 |
+
history.change(fn=update_vis, inputs=history, outputs=dataframe)
|
| 158 |
+
|
| 159 |
+
demo.launch(debug=True)
|
model_download_py.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""model_download.py
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1Y_JvDuAVDbA_d7NCISXd_6nbyLn3yDZa
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
# Check if the model is already downloaded
|
| 13 |
+
if not os.path.exists('lid.176.bin'):
|
| 14 |
+
print("Downloading fastText language detection model...")
|
| 15 |
+
os.system('wget https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin')
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
transformers
|
| 3 |
+
torchaudio
|
| 4 |
+
fasttext
|
| 5 |
+
pandas
|