Spaces:
Build error
Build error
| import gradio as gr | |
| # Use a pipeline as a high-level helper | |
| from transformers import pipeline | |
| detector = pipeline("object-detection", model="hustvl/yolos-tiny") | |
| # Load model directly | |
| from transformers import AutoImageProcessor, AutoModelForImageClassification | |
| processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") | |
| model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-50") | |
| def food_classifier(image): | |
| inputs = processor(image, return_tensors="pt") | |
| logits = model(**inputs).logits | |
| predicted_label = logits.argmax(-1).item() | |
| label = model.config.id2label[predicted_label] | |
| return [{'label': label, 'score': 0.0}] | |
| # Use a pipeline as a high-level helper | |
| from transformers import pipeline | |
| food_classifier = pipeline("image-classification", model="facebook/deit-base-distilled-patch16-384") | |
| def get_ingridients_list(image, score_threshold=.85): | |
| objects = detector(image) | |
| ingridients = [] | |
| for obj in objects: | |
| cropped_image = image.crop((obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'])) | |
| classes = food_classifier(cropped_image) | |
| best_match = max(classes, key=lambda x: x['score']) | |
| if best_match['score'] > score_threshold: | |
| ingridients.append(best_match['label']) | |
| return list(set(ingridients)) | |
| def get_ingridients(image): | |
| ingridients = get_ingridients_list(image) | |
| return ', '.join(ingridients) | |
| #text_to_text = pipeline("text-generation", model="ai-forever/mGPT") | |
| def get_reciepe(ingridients): | |
| return 'dish of ' + ingridients | |
| def get_answer(image): | |
| ingridients = get_ingridients(image) | |
| return get_reciepe(ingridients) | |
| # Create a Gradio interface | |
| iface = gr.Interface( | |
| fn=get_answer, # Function to call | |
| inputs=gr.Image(label="Upload an image", type="pil"), # Input type: Image | |
| outputs=gr.Markdown(label="Classification Result"), # Output type: Markdown | |
| title="Food Ingredient Classifier", | |
| description="Upload an image of a food ingredient to classify it." | |
| ) | |
| # Launch the Gradio app | |
| iface.launch() | |