aje6 commited on
Commit
2ee1f45
·
verified ·
1 Parent(s): 7716fff

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -0
app.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import cv2
3
+ from ultralytics import YOLO
4
+
5
+ # Load the pretrained YOLOv5 model
6
+ yolo_model = YOLO("yolov5s.pt") # Load the small version of YOLOv5
7
+
8
+ # Function to perform object detection with a configurable confidence threshold
9
+ def detect_objects(frame, confidence_threshold=0.5):
10
+ # Convert the frame from BGR (OpenCV) to RGB
11
+ image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
12
+
13
+ # Perform inference with YOLO, passing the confidence threshold
14
+ results = yolo_model(image, conf=confidence_threshold) # Set confidence threshold
15
+
16
+ # Draw bounding boxes and labels on the image
17
+ annotated_image = results.plot() # This automatically draws boxes and labels
18
+
19
+ # Convert the image back to BGR for displaying in Gradio
20
+ annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_RGB2BGR)
21
+
22
+ return annotated_image
23
+
24
+ # Gradio interface to use the webcam for real-time object detection
25
+ # Added a slider for the confidence threshold
26
+ iface = gr.Interface(fn=detect_objects,
27
+ inputs=[
28
+ gr.Video(source="webcam", type="numpy"), # Webcam input
29
+ gr.Slider(minimum=0.0, maximum=1.0, default=0.5, label="Confidence Threshold") # Confidence slider
30
+ ],
31
+ outputs="image") # Show output image with bounding boxes
32
+
33
+ iface.launch()