Spaces:
Sleeping
Sleeping
Delete utils.py
Browse files
utils.py
DELETED
@@ -1,183 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2
|
3 |
-
|
4 |
-
class_names = [
|
5 |
-
"A",
|
6 |
-
"B",
|
7 |
-
"C",
|
8 |
-
"D",
|
9 |
-
"E",
|
10 |
-
"F",
|
11 |
-
"G",
|
12 |
-
"H",
|
13 |
-
"I",
|
14 |
-
"J",
|
15 |
-
"K",
|
16 |
-
"L",
|
17 |
-
"M",
|
18 |
-
"N",
|
19 |
-
"O",
|
20 |
-
"P",
|
21 |
-
"Q",
|
22 |
-
"R",
|
23 |
-
"S",
|
24 |
-
"T",
|
25 |
-
"U",
|
26 |
-
"V",
|
27 |
-
"W",
|
28 |
-
"X",
|
29 |
-
"Y",
|
30 |
-
"Z",
|
31 |
-
]
|
32 |
-
|
33 |
-
# Create a list of colors for each class where each color is a tuple of 3 integer values
|
34 |
-
rng = np.random.default_rng(3)
|
35 |
-
colors = rng.uniform(0, 255, size=(len(class_names), 3))
|
36 |
-
|
37 |
-
|
38 |
-
def nms(boxes, scores, iou_threshold):
|
39 |
-
# Sort by score
|
40 |
-
sorted_indices = np.argsort(scores)[::-1]
|
41 |
-
|
42 |
-
keep_boxes = []
|
43 |
-
while sorted_indices.size > 0:
|
44 |
-
# Pick the last box
|
45 |
-
box_id = sorted_indices[0]
|
46 |
-
keep_boxes.append(box_id)
|
47 |
-
|
48 |
-
# Compute IoU of the picked box with the rest
|
49 |
-
ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
|
50 |
-
|
51 |
-
# Remove boxes with IoU over the threshold
|
52 |
-
keep_indices = np.where(ious < iou_threshold)[0]
|
53 |
-
|
54 |
-
# print(keep_indices.shape, sorted_indices.shape)
|
55 |
-
sorted_indices = sorted_indices[keep_indices + 1]
|
56 |
-
|
57 |
-
return keep_boxes
|
58 |
-
|
59 |
-
|
60 |
-
def multiclass_nms(boxes, scores, class_ids, iou_threshold):
|
61 |
-
unique_class_ids = np.unique(class_ids)
|
62 |
-
|
63 |
-
keep_boxes = []
|
64 |
-
for class_id in unique_class_ids:
|
65 |
-
class_indices = np.where(class_ids == class_id)[0]
|
66 |
-
class_boxes = boxes[class_indices, :]
|
67 |
-
class_scores = scores[class_indices]
|
68 |
-
|
69 |
-
class_keep_boxes = nms(class_boxes, class_scores, iou_threshold)
|
70 |
-
keep_boxes.extend(class_indices[class_keep_boxes])
|
71 |
-
|
72 |
-
return keep_boxes
|
73 |
-
|
74 |
-
|
75 |
-
def compute_iou(box, boxes):
|
76 |
-
# Compute xmin, ymin, xmax, ymax for both boxes
|
77 |
-
xmin = np.maximum(box[0], boxes[:, 0])
|
78 |
-
ymin = np.maximum(box[1], boxes[:, 1])
|
79 |
-
xmax = np.minimum(box[2], boxes[:, 2])
|
80 |
-
ymax = np.minimum(box[3], boxes[:, 3])
|
81 |
-
|
82 |
-
# Compute intersection area
|
83 |
-
intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
|
84 |
-
|
85 |
-
# Compute union area
|
86 |
-
box_area = (box[2] - box[0]) * (box[3] - box[1])
|
87 |
-
boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
88 |
-
union_area = box_area + boxes_area - intersection_area
|
89 |
-
|
90 |
-
# Compute IoU
|
91 |
-
iou = intersection_area / union_area
|
92 |
-
|
93 |
-
return iou
|
94 |
-
|
95 |
-
|
96 |
-
def xywh2xyxy(x):
|
97 |
-
# Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
|
98 |
-
y = np.copy(x)
|
99 |
-
y[..., 0] = x[..., 0] - x[..., 2] / 2
|
100 |
-
y[..., 1] = x[..., 1] - x[..., 3] / 2
|
101 |
-
y[..., 2] = x[..., 0] + x[..., 2] / 2
|
102 |
-
y[..., 3] = x[..., 1] + x[..., 3] / 2
|
103 |
-
return y
|
104 |
-
|
105 |
-
|
106 |
-
def draw_detections(image, boxes, scores, class_ids, mask_alpha=0.3):
|
107 |
-
det_img = image.copy()
|
108 |
-
|
109 |
-
img_height, img_width = image.shape[:2]
|
110 |
-
font_size = min([img_height, img_width]) * 0.0006
|
111 |
-
text_thickness = int(min([img_height, img_width]) * 0.001)
|
112 |
-
|
113 |
-
#det_img = draw_masks(det_img, boxes, class_ids, mask_alpha)
|
114 |
-
|
115 |
-
# Draw bounding boxes and labels of detections
|
116 |
-
for class_id, box, score in zip(class_ids, boxes, scores):
|
117 |
-
color = colors[class_id]
|
118 |
-
|
119 |
-
draw_box(det_img, box, color)
|
120 |
-
|
121 |
-
label = class_names[class_id]
|
122 |
-
caption = f"{label} {int(score * 100)}%"
|
123 |
-
draw_text(det_img, caption, box, color, font_size, text_thickness)
|
124 |
-
|
125 |
-
return det_img
|
126 |
-
|
127 |
-
|
128 |
-
def draw_box(
|
129 |
-
image: np.ndarray,
|
130 |
-
box: np.ndarray,
|
131 |
-
color: tuple[int, int, int] = (0, 0, 255),
|
132 |
-
thickness: int = 2,
|
133 |
-
) -> np.ndarray:
|
134 |
-
x1, y1, x2, y2 = box.astype(int)
|
135 |
-
return cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness)
|
136 |
-
|
137 |
-
|
138 |
-
def draw_text(
|
139 |
-
image: np.ndarray,
|
140 |
-
text: str,
|
141 |
-
box: np.ndarray,
|
142 |
-
color: tuple[int, int, int] = (0, 0, 255),
|
143 |
-
font_size: float = 0.001,
|
144 |
-
text_thickness: int = 2,
|
145 |
-
) -> np.ndarray:
|
146 |
-
x1, y1, x2, y2 = box.astype(int)
|
147 |
-
(tw, th), _ = cv2.getTextSize(
|
148 |
-
text=text,
|
149 |
-
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
|
150 |
-
fontScale=font_size,
|
151 |
-
thickness=text_thickness,
|
152 |
-
)
|
153 |
-
th = int(th * 1.2)
|
154 |
-
|
155 |
-
cv2.rectangle(image, (x1, y1), (x1 + tw, y1 - th), color, -1)
|
156 |
-
|
157 |
-
return cv2.putText(
|
158 |
-
image,
|
159 |
-
text,
|
160 |
-
(x1, y1),
|
161 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
162 |
-
font_size,
|
163 |
-
(255, 255, 255),
|
164 |
-
text_thickness,
|
165 |
-
cv2.LINE_AA,
|
166 |
-
)
|
167 |
-
|
168 |
-
|
169 |
-
def draw_masks(
|
170 |
-
image: np.ndarray, boxes: np.ndarray, classes: np.ndarray, mask_alpha: float = 0.3
|
171 |
-
) -> np.ndarray:
|
172 |
-
mask_img = image.copy()
|
173 |
-
|
174 |
-
# Draw bounding boxes and labels of detections
|
175 |
-
for box, class_id in zip(boxes, classes):
|
176 |
-
color = colors[class_id]
|
177 |
-
|
178 |
-
x1, y1, x2, y2 = box.astype(int)
|
179 |
-
|
180 |
-
# Draw fill rectangle in mask image
|
181 |
-
cv2.rectangle(mask_img, (x1, y1), (x2, y2), color, -1)
|
182 |
-
|
183 |
-
return cv2.addWeighted(mask_img, mask_alpha, image, 1 - mask_alpha, 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|