aje6 commited on
Commit
78ab471
·
verified ·
1 Parent(s): 645e6a2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -255,10 +255,8 @@ def predict(image):
255
  # Normalize the image
256
  mean = [0.485, 0.456, 0.406]
257
  std = [0.229, 0.224, 0.225]
258
-
259
  mean = np.expand_dims(mean, axis=(1,2))
260
  std = np.expand_dims(std, axis=(1,2))
261
-
262
  image = (image / 255.0 - mean)/std
263
 
264
  # Convert the image to a numpy array and add a batch dimension
@@ -268,7 +266,6 @@ def predict(image):
268
 
269
  # Make prediction
270
  output = model.run(None, {input_name: image})
271
-
272
 
273
  print("type output:", type(output))
274
  print(output)
@@ -281,13 +278,17 @@ def predict(image):
281
  print("type annotated image:", type(annotated_img))
282
  print(annotated_img)
283
 
 
 
 
284
  return annotated_img
285
 
286
  # Gradio interface
287
  demo = gr.Interface(
288
  fn=predict,
289
  inputs=gr.Image(sources=["webcam"], type="numpy"), # Accepts image input
290
- outputs="annotatedimage" # Customize based on your output format
 
291
  )
292
 
293
  if __name__ == "__main__":
 
255
  # Normalize the image
256
  mean = [0.485, 0.456, 0.406]
257
  std = [0.229, 0.224, 0.225]
 
258
  mean = np.expand_dims(mean, axis=(1,2))
259
  std = np.expand_dims(std, axis=(1,2))
 
260
  image = (image / 255.0 - mean)/std
261
 
262
  # Convert the image to a numpy array and add a batch dimension
 
266
 
267
  # Make prediction
268
  output = model.run(None, {input_name: image})
 
269
 
270
  print("type output:", type(output))
271
  print(output)
 
278
  print("type annotated image:", type(annotated_img))
279
  print(annotated_img)
280
 
281
+ # Convert to PIL Image
282
+ annotated_img = Image.fromarray(annotated_img)
283
+
284
  return annotated_img
285
 
286
  # Gradio interface
287
  demo = gr.Interface(
288
  fn=predict,
289
  inputs=gr.Image(sources=["webcam"], type="numpy"), # Accepts image input
290
+ # outputs="annotatedimage" # Customize based on your output format
291
+ outputs=gr.Image(type="pil"), # Accepts image input
292
  )
293
 
294
  if __name__ == "__main__":