aje6 commited on
Commit
9303397
·
verified ·
1 Parent(s): 9a2da70

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -18
app.py CHANGED
@@ -24,28 +24,28 @@ def detect_objects(frame, confidence_threshold=0.5):
24
  inputs = {session.get_inputs()[0].name: image_input}
25
  outputs = session.run(None, inputs)
26
 
27
- # Assuming YOLO model outputs are in the form of [boxes, confidences, class_probs]
28
- boxes, confidences, class_probs = outputs
29
 
30
- # Post-processing: Filter boxes by confidence threshold
31
- detections = []
32
- for i, confidence in enumerate(confidences[0]):
33
- if confidence >= confidence_threshold:
34
- x1, y1, x2, y2 = boxes[0][i]
35
- class_id = np.argmax(class_probs[0][i]) # Get class with highest probability
36
- detections.append((x1, y1, x2, y2, confidence, class_id))
37
 
38
- # Draw bounding boxes and labels on the image
39
- for (x1, y1, x2, y2, confidence, class_id) in detections:
40
- color = (0, 255, 0) # Green color for bounding boxes
41
- cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
42
- label = f"Class {class_id}: {confidence:.2f}"
43
- cv2.putText(image, label, (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
44
 
45
- # Convert the image back to BGR for displaying in Gradio
46
- image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
47
 
48
- return image_bgr
49
 
50
  # Gradio interface to use the webcam for real-time object detection
51
  # Added a slider for the confidence threshold
 
24
  inputs = {session.get_inputs()[0].name: image_input}
25
  outputs = session.run(None, inputs)
26
 
27
+ # # Assuming YOLO model outputs are in the form of [boxes, confidences, class_probs]
28
+ # boxes, confidences, class_probs = outputs
29
 
30
+ # # Post-processing: Filter boxes by confidence threshold
31
+ # detections = []
32
+ # for i, confidence in enumerate(confidences[0]):
33
+ # if confidence >= confidence_threshold:
34
+ # x1, y1, x2, y2 = boxes[0][i]
35
+ # class_id = np.argmax(class_probs[0][i]) # Get class with highest probability
36
+ # detections.append((x1, y1, x2, y2, confidence, class_id))
37
 
38
+ # # Draw bounding boxes and labels on the image
39
+ # for (x1, y1, x2, y2, confidence, class_id) in detections:
40
+ # color = (0, 255, 0) # Green color for bounding boxes
41
+ # cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
42
+ # label = f"Class {class_id}: {confidence:.2f}"
43
+ # cv2.putText(image, label, (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
44
 
45
+ # # Convert the image back to BGR for displaying in Gradio
46
+ # image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
47
 
48
+ return outputs
49
 
50
  # Gradio interface to use the webcam for real-time object detection
51
  # Added a slider for the confidence threshold