import gradio as gr import cv2 from ultralytics import YOLO # Load the pretrained YOLOv5 model yolo_model = YOLO("yolov5s.pt") # Load the small version of YOLOv5 # Function to perform object detection with a configurable confidence threshold def detect_objects(frame, confidence_threshold=0.5): # Convert the frame from BGR (OpenCV) to RGB image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Perform inference with YOLO, passing the confidence threshold results = yolo_model(image, conf=confidence_threshold) # Set confidence threshold # Draw bounding boxes and labels on the image annotated_image = results.plot() # This automatically draws boxes and labels # Convert the image back to BGR for displaying in Gradio annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_RGB2BGR) return annotated_image # Gradio interface to use the webcam for real-time object detection # Added a slider for the confidence threshold iface = gr.Interface(fn=detect_objects, inputs=[ gr.Video(source="webcam", type="numpy"), # Webcam input gr.Slider(minimum=0.0, maximum=1.0, default=0.5, label="Confidence Threshold") # Confidence slider ], outputs="image") # Show output image with bounding boxes iface.launch()