import gradio as gr import cv2 import numpy as np import onnxruntime as ort # Load the ONNX model using onnxruntime onnx_model_path = "Model_IV.onnx" # Update with your ONNX model path session = ort.InferenceSession(onnx_model_path) # Function to perform object detection with the ONNX model def detect_objects(frame, confidence_threshold=0.5): # Convert the frame from BGR (OpenCV) to RGB image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Preprocessing: Resize and normalize the image # Assuming YOLO model input is 640x640, update according to your model's input size input_size = (640, 640) image_resized = cv2.resize(image, input_size) image_normalized = image_resized / 255.0 # Normalize to [0, 1] image_input = np.transpose(image_normalized, (2, 0, 1)) # Change to CHW format image_input = np.expand_dims(image_input, axis=0).astype(np.float32) # Add batch dimension # Perform inference inputs = {session.get_inputs()[0].name: image_input} outputs = session.run(None, inputs) # # Assuming YOLO model outputs are in the form of [boxes, confidences, class_probs] # boxes, confidences, class_probs = outputs # # Post-processing: Filter boxes by confidence threshold # detections = [] # for i, confidence in enumerate(confidences[0]): # if confidence >= confidence_threshold: # x1, y1, x2, y2 = boxes[0][i] # class_id = np.argmax(class_probs[0][i]) # Get class with highest probability # detections.append((x1, y1, x2, y2, confidence, class_id)) # # Draw bounding boxes and labels on the image # for (x1, y1, x2, y2, confidence, class_id) in detections: # color = (0, 255, 0) # Green color for bounding boxes # cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) # label = f"Class {class_id}: {confidence:.2f}" # cv2.putText(image, label, (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) # # Convert the image back to BGR for displaying in Gradio # image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) return outputs # Gradio interface to use the webcam for real-time object detection # Added a slider for the confidence threshold iface = gr.Interface(fn=detect_objects, #inputs=[ # gr.Video(sources="webcam", type="numpy"), # Webcam input inputs = gr.Image(sources=["webcam"], type="numpy"), # gr.Slider(minimum=0.0, maximum=1.0, default=0.5, label="Confidence Threshold") # Confidence slider # ], outputs="image") # Show output image with bounding boxes iface.launch()