aje6 commited on
Commit
8ae4fc0
·
verified ·
1 Parent(s): cbf9bde

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -14
app.py CHANGED
@@ -8,28 +8,27 @@ import numpy as np
8
 
9
  # Load the PT model
10
  model = YOLO("Model_IV.pt")
11
- checkpoint = torch.load("Model_IV.pt")
12
 
13
- # Define preprocessing
14
- transform = T.Compose([
15
- T.Resize((224, 224)), # Adjust to your model's input size
16
- T.ToTensor(),
17
- ])
18
 
19
  def predict(image):
20
- # Preprocess the image by converting the colour space to RGB
21
  image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
22
- print("converted the colour to RGB.")
23
 
24
- # Process output (adjust based on your model's format)
25
  results = model(image)
26
- print("ran the model")
27
- annotated_img = results[0].plot()
28
- print("got annotated img")
29
- print("type annotated img:", type(annotated_img))
30
 
 
 
31
  annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_RGB2BGR)
32
- print("converted the colour to BGR.")
33
 
34
  return annotated_img
35
 
 
8
 
9
  # Load the PT model
10
  model = YOLO("Model_IV.pt")
11
+ # checkpoint = torch.load("Model_IV.pt")
12
 
13
+ # # Define preprocessing
14
+ # transform = T.Compose([
15
+ # T.Resize((224, 224)), # Adjust to your model's input size
16
+ # T.ToTensor(),
17
+ # ])
18
 
19
  def predict(image):
20
+ # Preprocessing: Convert the colour space to RGB
21
  image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
22
+ # print("converted the colour to RGB.")
23
 
24
+ # Make prediction
25
  results = model(image)
26
+ #print("ran the model")
 
 
 
27
 
28
+ # Postprocessing: Convert the colour space back to BGR
29
+ annotated_img = results[0].plot()
30
  annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_RGB2BGR)
31
+ # print("converted the colour to BGR.")
32
 
33
  return annotated_img
34