aje6 commited on
Commit
acfde9f
·
verified ·
1 Parent(s): dc81029

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +328 -0
app.py ADDED
@@ -0,0 +1,328 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import gradio as gr
2
+ # import cv2
3
+ # import numpy as np
4
+ # import onnxruntime as ort
5
+
6
+ # # Load the ONNX model using onnxruntime
7
+ # onnx_model_path = "Model_IV.onnx" # Update with your ONNX model path
8
+ # session = ort.InferenceSession(onnx_model_path)
9
+
10
+ # # Function to perform object detection with the ONNX model
11
+ # def detect_objects(frame, confidence_threshold=0.5):
12
+ # # Convert the frame from BGR (OpenCV) to RGB
13
+ # image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
14
+
15
+ # # Preprocessing: Resize and normalize the image
16
+ # # Assuming YOLO model input is 640x640, update according to your model's input size
17
+ # input_size = (640, 640)
18
+ # image_resized = cv2.resize(image, input_size)
19
+ # image_normalized = image_resized / 255.0 # Normalize to [0, 1]
20
+ # image_input = np.transpose(image_normalized, (2, 0, 1)) # Change to CHW format
21
+ # image_input = np.expand_dims(image_input, axis=0).astype(np.float32) # Add batch dimension
22
+
23
+ # # Perform inference
24
+ # inputs = {session.get_inputs()[0].name: image_input}
25
+ # outputs = session.run(None, inputs)
26
+
27
+ # # # Assuming YOLO model outputs are in the form of [boxes, confidences, class_probs]
28
+ # # boxes, confidences, class_probs = outputs
29
+
30
+ # # # Post-processing: Filter boxes by confidence threshold
31
+ # # detections = []
32
+ # # for i, confidence in enumerate(confidences[0]):
33
+ # # if confidence >= confidence_threshold:
34
+ # # x1, y1, x2, y2 = boxes[0][i]
35
+ # # class_id = np.argmax(class_probs[0][i]) # Get class with highest probability
36
+ # # detections.append((x1, y1, x2, y2, confidence, class_id))
37
+
38
+ # # # Draw bounding boxes and labels on the image
39
+ # # for (x1, y1, x2, y2, confidence, class_id) in detections:
40
+ # # color = (0, 255, 0) # Green color for bounding boxes
41
+ # # cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
42
+ # # label = f"Class {class_id}: {confidence:.2f}"
43
+ # # cv2.putText(image, label, (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
44
+
45
+ # # # Convert the image back to BGR for displaying in Gradio
46
+ # # image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
47
+
48
+ # return outputs
49
+
50
+ # # Gradio interface to use the webcam for real-time object detection
51
+ # # Added a slider for the confidence threshold
52
+ # iface = gr.Interface(fn=detect_objects,
53
+ # #inputs=[
54
+ # # gr.Video(sources="webcam", type="numpy"), # Webcam input
55
+ # inputs = gr.Image(sources=["webcam"], type="numpy"),
56
+ # # gr.Slider(minimum=0.0, maximum=1.0, default=0.5, label="Confidence Threshold") # Confidence slider
57
+ # # ],
58
+ # outputs="image") # Show output image with bounding boxes
59
+
60
+ # iface.launch()
61
+ ###
62
+ # import gradio as gr
63
+ # import cv2
64
+ # from huggingface_hub import hf_hub_download
65
+ # from gradio_webrtc import WebRTC
66
+ # from twilio.rest import Client
67
+ # import os
68
+ # from inference import YOLOv8
69
+
70
+ # model_file = hf_hub_download(
71
+ # repo_id="aje6/ASL-Fingerspelling-Detection", filename="onnx/Model_IV.onnx"
72
+ # )
73
+
74
+ # model = YOLOv8(model_file)
75
+
76
+ # account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
77
+ # auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
78
+
79
+ # if account_sid and auth_token:
80
+ # client = Client(account_sid, auth_token)
81
+
82
+ # token = client.tokens.create()
83
+
84
+ # rtc_configuration = {
85
+ # "iceServers": token.ice_servers,
86
+ # "iceTransportPolicy": "relay",
87
+ # }
88
+ # else:
89
+ # rtc_configuration = None
90
+
91
+
92
+ # def detection(image, conf_threshold=0.3):
93
+ # image = cv2.resize(image, (model.input_width, model.input_height))
94
+ # new_image = model.detect_objects(image, conf_threshold)
95
+ # return cv2.resize(new_image, (500, 500))
96
+
97
+
98
+ # css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
99
+ # .my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
100
+
101
+
102
+ # with gr.Blocks(css=css) as demo:
103
+ # gr.HTML(
104
+ # """
105
+ # <h1 style='text-align: center'>
106
+ # YOLOv10 Webcam Stream (Powered by WebRTC ⚡️)
107
+ # </h1>
108
+ # """
109
+ # )
110
+ # gr.HTML(
111
+ # """
112
+ # <h3 style='text-align: center'>
113
+ # <a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
114
+ # </h3>
115
+ # """
116
+ # )
117
+ # with gr.Column(elem_classes=["my-column"]):
118
+ # with gr.Group(elem_classes=["my-group"]):
119
+ # image = WebRTC(label="Stream", rtc_configuration=rtc_configuration)
120
+ # conf_threshold = gr.Slider(
121
+ # label="Confidence Threshold",
122
+ # minimum=0.0,
123
+ # maximum=1.0,
124
+ # step=0.05,
125
+ # value=0.30,
126
+ # )
127
+
128
+ # image.stream(
129
+ # fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10
130
+ # )
131
+
132
+ # if __name__ == "__main__":
133
+ # demo.launch()
134
+
135
+ # import gradio as gr
136
+ # import numpy as np
137
+ # import cv2
138
+ # from ultralytics import YOLO
139
+
140
+ # model = YOLO('Model_IV.pt')
141
+
142
+ # def transform_cv2(frame, transform):
143
+ # if transform == "cartoon":
144
+ # # prepare color
145
+ # img_color = cv2.pyrDown(cv2.pyrDown(frame))
146
+ # for _ in range(6):
147
+ # img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
148
+ # img_color = cv2.pyrUp(cv2.pyrUp(img_color))
149
+
150
+ # # prepare edges
151
+ # img_edges = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
152
+ # img_edges = cv2.adaptiveThreshold(
153
+ # cv2.medianBlur(img_edges, 7),
154
+ # 255,
155
+ # cv2.ADAPTIVE_THRESH_MEAN_C,
156
+ # cv2.THRESH_BINARY,
157
+ # 9,
158
+ # 2,
159
+ # )
160
+ # img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
161
+ # # combine color and edges
162
+ # img = cv2.bitwise_and(img_color, img_edges)
163
+ # return img
164
+ # elif transform == "edges":
165
+ # # perform edge detection
166
+ # img = cv2.cvtColor(cv2.Canny(frame, 100, 200), cv2.COLOR_GRAY2BGR)
167
+ # return img
168
+ # else:
169
+ # return np.flipud(frame)
170
+
171
+ # with gr.Blocks() as demo:
172
+ # with gr.Row():
173
+ # with gr.Column():
174
+ # transform = gr.Dropdown(choices=["cartoon", "edges", "flip"],
175
+ # value="flip", label="Transformation")
176
+ # input_img = gr.Image(sources=["webcam"], type="numpy")
177
+ # with gr.Column():
178
+ # output_img = gr.Image(streaming=True)
179
+ # dep = input_img.stream(transform_cv2, [input_img, transform], [output_img],
180
+ # time_limit=30, stream_every=0.1, concurrency_limit=30)
181
+
182
+ # if __name__ == "__main__":
183
+ # demo.launch()
184
+
185
+ ###
186
+
187
+ # import gradio as gr
188
+ # import torch
189
+ # import cv2
190
+
191
+ # # Load the YOLOv8 model
192
+ # model = torch.hub.load('ultralytics/yolov8', 'yolov8s', trust_repo=True)
193
+ # model.load_state_dict(torch.load('Model_IV'))
194
+
195
+ # def inference(img):
196
+ # results = model(img)
197
+ # annotated_img = results.render()[0]
198
+ # return annotated_img
199
+
200
+ # iface = gr.Interface(fn=inference, inputs="webcam", outputs="image")
201
+ # iface.launch()
202
+
203
+ import gradio as gr
204
+ import torch
205
+ from PIL import Image
206
+ import torchvision.transforms as T
207
+ from ultralytics import YOLO
208
+ # import onnxruntime as ort
209
+ import cv2
210
+ import numpy as np
211
+
212
+ # Load your model
213
+
214
+ model = YOLO("Model_IV.pt")
215
+ # model = torch.load("Model_IV.pt")
216
+ # model.eval()
217
+ checkpoint = torch.load("Model_IV.pt")
218
+ # model.load_state_dict(checkpoint) # Load the saved weights
219
+ # model.eval() # Set the model to evaluation mode
220
+
221
+ # Load the onnx model
222
+ # model = ort.InferenceSession("Model_IV.onnx")
223
+
224
+ # Define preprocessing
225
+ transform = T.Compose([
226
+ T.Resize((224, 224)), # Adjust to your model's input size
227
+ T.ToTensor(),
228
+ ])
229
+
230
+ def predict(image):
231
+ # Preprocess the image
232
+ img_tensor = transform(image).unsqueeze(0) # Add batch dimension
233
+
234
+ # # Make prediction
235
+ # with torch.no_grad():
236
+ # output = model(img_tensor)
237
+
238
+ # Process output (adjust based on your model's format)
239
+ results = model(image)
240
+ annotated_img = results[0].plot()
241
+ return annotated_img
242
+
243
+ # # Preprocess the image
244
+
245
+ # # Get name and shape of the model's inputs
246
+ # input_name = model.get_inputs()[0].name
247
+ # input_shape = model.get_inputs()[0].shape
248
+
249
+ # # Resize the image to the model's input shape
250
+ # image = cv2.resize(image, (input_shape[2], input_shape[3]))
251
+
252
+ # original_image_shape = image.shape
253
+ # print("Original image shape:", original_image_shape)
254
+
255
+ # # Reshape the image to match the model's input shape
256
+ # image = image.reshape(3, 640, 640)
257
+
258
+ # # Normalize output image using ImageNet-style normalization
259
+ # mean = [0.485, 0.456, 0.406]
260
+ # std = [0.229, 0.224, 0.225]
261
+ # mean = np.expand_dims(mean, axis=(1,2))
262
+ # std = np.expand_dims(std, axis=(1,2))
263
+ # image = (image / 255.0 - mean)/std
264
+
265
+ # # Convert the image to a numpy array and add a batch dimension
266
+ # if len(input_shape) == 4 and input_shape[0] == 1:
267
+ # image = np.expand_dims(image, axis=0)
268
+ # image = image.astype(np.float32)
269
+
270
+ # print("Input image shape:", image.shape)
271
+
272
+ # # Make prediction
273
+ # output = model.run(None, {input_name: image})
274
+
275
+ # # print("Output shape:", output.shape)
276
+
277
+ # # print("type output:", type(output))
278
+ # # print(output)
279
+
280
+ # # Postprocess output image
281
+
282
+ # annotated_img = output[0]
283
+
284
+
285
+
286
+ # # annotated_img = (output[0] / 255.0 - mean)/std
287
+ # # annotated_img = classes[output[0][0].argmax(0)]
288
+
289
+ # print("Annotated image type before normalization:", type(annotated_img))
290
+ # # print("Annotated image before normalization:", annotated_img)
291
+ # print("Min value of image before normalization:", np.min(annotated_img))
292
+ # print("Max value of image before normalization:", np.max(annotated_img))
293
+
294
+ # # # Normalize output image using ImageNet-style normalization (again)
295
+ # # annotated_img = (annotated_img / 255.0 - mean)/std
296
+
297
+ # # Normalize output image using Min-Max normalization
298
+ # min_val = np.min(annotated_img)
299
+ # max_val = np.max(annotated_img)
300
+ # annotated_img = (annotated_img - min_val) / (max_val - min_val)
301
+
302
+ # print("Min value of image after normalization:", np.min(annotated_img))
303
+ # print("Max value of image after normalization:", np.max(annotated_img))
304
+ # print("annotated_img type after normalization:", type(annotated_img))
305
+ # # print("annotated_img shape after normalization:", annotated_img.shape)
306
+
307
+ # # Reshape the image to match the PIL Image input shape
308
+ # print("annotated_img shape before reshape:", annotated_img.shape)
309
+ # annotated_img = annotated_img.reshape(original_image_shape)
310
+ # print("annotated_img shape after reshape:", annotated_img.shape)
311
+
312
+ # # Convert to PIL Image
313
+ # annotated_img = Image.fromarray(annotated_img)
314
+
315
+ # print("PIL Image type:", type(annotated_img))
316
+ # # print("PIL Image shape:", annotated_img.shape)
317
+
318
+ # return annotated_img
319
+
320
+ # Gradio interface
321
+ demo = gr.Interface(
322
+ fn=predict,
323
+ inputs=gr.Image(sources=["webcam"]), # Accepts image input
324
+ outputs="image" # Customize based on your output format
325
+ )
326
+
327
+ if __name__ == "__main__":
328
+ demo.launch()