Spaces:
Sleeping
Sleeping
from huggingface_hub import InferenceClient | |
import gradio as gr | |
import json | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def respond(message, chat_history, system_message, max_tokens, temperature, top_p): | |
try: | |
# 1. Log received data (for debugging) | |
data_received = { | |
"message": message, | |
"chat_history": chat_history, # Correct name | |
"system_message": system_message, | |
"max_tokens": max_tokens, | |
"temperature": temperature, | |
"top_p": top_p, | |
} | |
print(json.dumps(data_received, indent=4)) | |
# 2. Convert chat_history to messages format | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, bot_msg in chat_history: #unpack the chat history | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if bot_msg: | |
messages.append({"role": "assistant", "content": bot_msg}) | |
messages.append({"role": "user", "content": message}) | |
# 3. Call Inference API | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
yield "An error occurred during processing." # Important: Yield an error message | |
demo = gr.Chatbot( # Use gr.Chatbot | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are an AI assistant responding to missed calls with text messaging. Keep responses short and specific.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=100, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.2, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.50, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |