Spaces:
Running
Running
File size: 1,944 Bytes
f7a34c2 57e5f84 f7a34c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import gradio as gr
import os
import requests
from langchain_community.document_loaders import WebBaseLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
# β
Read OpenRouter API key from HF secret
OPENROUTER_API_KEY = os.environ.get("ArjunHF")
class OpenRouterChatModel(ChatOpenAI):
def __init__(self, **kwargs):
super().__init__(
openai_api_base="https://openrouter.ai/api/v1",
openai_api_key=OPENROUTER_API_KEY,
model_name="mistralai/mistral-small-3.2-24b-instruct:free", # mistralai/mistral-small-3.2-24b-instruct:free # deepseek/deepseek-r1-0528:free
**kwargs
)
def qa_on_url(url, question):
try:
loader = WebBaseLoader(url)
docs = loader.load()
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
split_docs = splitter.split_documents(docs)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vectordb = FAISS.from_documents(split_docs, embeddings)
retriever = vectordb.as_retriever()
llm = OpenRouterChatModel(temperature=0.2)
qa_chain = RetrievalQA.from_chain_type(llm, retriever=retriever)
return qa_chain.run(question)
except Exception as e:
return f"β Error: {e}"
iface = gr.Interface(
fn=qa_on_url,
inputs=[gr.Textbox(label="Enter Web URL"), gr.Textbox(label="Your Question")],
outputs="text",
title="π Ask Questions About Any Webpage (Mistral 3.2 via OpenRouter + LangChain)",
description="β οΈ This may take 10β20 seconds depending on the page length and LLM response time. Please be patient!"
)
if __name__ == "__main__":
iface.launch() |