Spaces:
Sleeping
Sleeping
File size: 27,306 Bytes
bdcf95e 59a0fd9 bdcf95e 59a0fd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 |
import streamlit as st
import json
from langchain_core.prompts import ChatPromptTemplate
from pydantic import BaseModel, Field
from langchain_openai import ChatOpenAI
from langchain_community.document_loaders import WebBaseLoader
import pdfplumber
import PyPDF2
import fitz # PyMuPDF
from PIL import Image
import easyocr
import os
import tempfile
import re
import io
# Fix for Windows OpenMP conflict
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# Set USER_AGENT to avoid warnings
os.environ["USER_AGENT"] = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
# Set page configuration
st.set_page_config(
page_title="ATS_Assassin",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for better styling
st.markdown("""
<style>
.main {
padding: 0rem 1rem;
}
.stAlert {
margin-top: 1rem;
}
/* Enhanced score card styling */
.score-card {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 2rem;
border-radius: 20px;
text-align: center;
margin: 0.5rem;
box-shadow: 0 10px 20px rgba(0,0,0,0.1);
transition: transform 0.3s ease, box-shadow 0.3s ease;
position: relative;
overflow: hidden;
}
.score-card:hover {
transform: translateY(-5px);
box-shadow: 0 15px 30px rgba(0,0,0,0.2);
}
.score-card::before {
content: "";
position: absolute;
top: -50%;
left: -50%;
width: 200%;
height: 200%;
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, transparent 70%);
animation: shimmer 3s infinite;
}
@keyframes shimmer {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
.score-card-initial {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
}
.score-card-improved {
background: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%);
}
.score-card-improvement {
background: linear-gradient(135deg, #fa709a 0%, #fee140 100%);
}
.score-label {
color: white;
font-size: 0.9rem;
font-weight: 500;
margin-bottom: 0.5rem;
opacity: 0.9;
}
.score-value {
color: white;
font-size: 2.5rem;
font-weight: bold;
margin-bottom: 0.5rem;
text-shadow: 2px 2px 4px rgba(0,0,0,0.2);
}
.score-delta {
color: white;
font-size: 1.2rem;
font-weight: 600;
display: flex;
align-items: center;
justify-content: center;
gap: 0.3rem;
}
.arrow-up {
width: 0;
height: 0;
border-left: 8px solid transparent;
border-right: 8px solid transparent;
border-bottom: 12px solid #4ade80;
display: inline-block;
animation: bounce 2s infinite;
}
@keyframes bounce {
0%, 100% { transform: translateY(0); }
50% { transform: translateY(-5px); }
}
/* Progress ring for scores */
.progress-ring {
position: relative;
width: 120px;
height: 120px;
margin: 0 auto 1rem auto;
}
.progress-ring-circle {
stroke: rgba(255,255,255,0.3);
fill: transparent;
stroke-width: 8;
}
.progress-ring-circle-progress {
stroke: white;
fill: transparent;
stroke-width: 8;
stroke-linecap: round;
transform: rotate(-90deg);
transform-origin: 50% 50%;
transition: stroke-dashoffset 1s ease-in-out;
}
.section-header {
background-color: #e9ecef;
padding: 0.5rem 1rem;
border-radius: 5px;
margin: 0.5rem 0;
cursor: pointer;
}
.section-content {
padding: 1rem;
background-color: #ffffff;
border: 1px solid #dee2e6;
border-radius: 5px;
margin-bottom: 1rem;
}
/* Animated gradient background for results header */
.results-header {
background: linear-gradient(-45deg, #ee7752, #e73c7e, #23a6d5, #23d5ab);
background-size: 400% 400%;
animation: gradient 15s ease infinite;
color: white;
padding: 2rem;
border-radius: 15px;
text-align: center;
margin-bottom: 2rem;
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
@keyframes gradient {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
.results-header h1 {
margin: 0;
font-size: 2.5rem;
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
}
/* Metric styles for native Streamlit metrics */
[data-testid="metric-container"] {
background: transparent;
padding: 0;
}
[data-testid="metric-container"] > div {
background: transparent;
}
[data-testid="metric-container"] label {
color: white !important;
font-weight: 500;
opacity: 0.9;
}
[data-testid="metric-container"] [data-testid="metric-value"] {
color: white !important;
font-size: 2.2rem;
font-weight: bold;
}
[data-testid="metric-container"] [data-testid="metric-delta"] {
color: white !important;
font-size: 1.1rem;
}
</style>
""", unsafe_allow_html=True)
# Define Pydantic models
class ResumeSection(BaseModel):
"""Information about a section in a resume."""
section_name: str = Field(description="The name of the resume section (e.g., 'Experience', 'Education', 'Skills').")
content: str = Field(description="The full text content of this section.")
class ResumeAnalysis(BaseModel):
"""Analysis of a resume based on a job description."""
resume_sections: list[ResumeSection] = Field(description="A list of identified sections and their content from the resume.")
initial_match_score: int = Field(description="An initial match score out of 100, indicating how well the resume matches the job description.")
score_issues: str = Field(description="A detailed summary of the main reasons why the initial score is not 100, specifically identifying key requirements from the job description that are missing or not clearly highlighted in the resume.")
suggested_resume_updates: str = Field(description="Specific, actionable suggestions for how to modify the resume content to better match the job description. Focus on adding relevant keywords and rephrasing existing content to align with job requirements.")
updated_resume_content_suggestion: list[ResumeSection] = Field(description="A suggested revised version of the resume content, presented as a list of sections with potentially modified content based on the job description. These modifications should be realistic and significantly improve the match score.")
# Initialize session state
if 'analysis_complete' not in st.session_state:
st.session_state.analysis_complete = False
if 'analysis_result' not in st.session_state:
st.session_state.analysis_result = None
if 'ocr_reader' not in st.session_state:
st.session_state.ocr_reader = None
# Helper functions
@st.cache_resource
def get_ocr_reader():
"""Initialize OCR reader once and cache it"""
try:
return easyocr.Reader(['en'], gpu=False) # Disable GPU for Windows compatibility
except Exception as e:
st.warning(f"OCR initialization warning: {e}")
return None
def extract_text_from_pdf(pdf_path):
"""Extracts text from a PDF using multiple methods without requiring poppler."""
# Method 1: Try pdfplumber first
try:
with pdfplumber.open(pdf_path) as pdf:
if pdf.pages:
all_text = ""
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
all_text += page_text + "\n"
if all_text.strip():
return all_text.strip()
else:
st.info("pdfplumber did not extract text. Trying PyPDF2...")
except Exception as e:
st.warning(f"pdfplumber failed: {e}. Trying PyPDF2...")
# Method 2: Try PyPDF2
try:
with open(pdf_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
all_text = ""
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text = page.extract_text()
if text:
all_text += text + "\n"
if all_text.strip():
return all_text.strip()
else:
st.info("PyPDF2 did not extract text. Trying PyMuPDF with OCR...")
except Exception as e:
st.warning(f"PyPDF2 failed: {e}. Trying PyMuPDF with OCR...")
# Method 3: Use PyMuPDF (fitz) to convert PDF to images for OCR
try:
# Open the PDF with PyMuPDF
pdf_document = fitz.open(pdf_path)
if len(pdf_document) == 0:
return "The PDF file is empty or has no pages."
# Get the first page
page = pdf_document[0]
# Convert page to image
mat = fitz.Matrix(2, 2) # Increase resolution
pix = page.get_pixmap(matrix=mat)
img_data = pix.tobytes("png")
# Convert to PIL Image
image = Image.open(io.BytesIO(img_data))
# Save the image temporarily for OCR
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_img:
image_path = tmp_img.name
image.save(image_path, 'PNG')
# Get or initialize OCR reader
reader = get_ocr_reader()
if reader is None:
return "OCR reader could not be initialized."
# Read text from the image
result = reader.readtext(image_path)
# Extract text
extracted_text = ""
for (bbox, text, prob) in result:
extracted_text += text + " "
# Clean up
pdf_document.close()
try:
os.unlink(image_path)
except:
pass
if extracted_text.strip():
return extracted_text.strip()
else:
return "Could not extract text from the PDF using any method."
except Exception as e:
return f"All text extraction methods failed: {e}"
def analyze_and_update_resume(resume_text: str, job_description_text: str):
"""Analyze resume against job description and provide suggestions."""
try:
# Initialize LLM
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
# Create prompt template
prompt = ChatPromptTemplate.from_messages([
("system", """You are an expert ATS scorer and resume optimization assistant.
Your primary goal is to provide actionable and realistic suggestions to *significantly improve* a resume's match score against a given job description.
Your task is to analyze a resume against a job description with high accuracy, simulating an advanced ATS system.
First, meticulously identify ALL key sections and their content from the provided resume text.
Then, perform a detailed assessment of how well the resume's content, skills, and experience align with the requirements and preferences outlined in the job description. Provide an initial match score out of 100, explaining your reasoning based on specific keywords, skills, and experiences mentioned in both the resume and job description.
Clearly articulate the specific gaps or areas where the resume significantly deviates from or fails to address key aspects of the job description. These should be concrete points directly tied to the job requirements.
Based on this analysis, provide specific and impactful suggestions for modifying the resume content. **These suggestions must be designed to strategically increase the resume's ATS score against the job description by directly addressing the identified gaps and highlighting relevant experience.** Focus on:
1. Incorporating relevant keywords and phrases from the job description where applicable and where supported by the candidate's experience.
2. Rephrasing existing bullet points or descriptions to *strongly* highlight experiences that are directly relevant to the job requirements and use action verbs that match the job description's tone.
3. Adding missing information if it's implied by the existing content but not explicitly stated (e.g., mentioning specific tools, methodologies, or quantifiable results used) that are mentioned in the job description.
4. **Ensure the suggested modifications realistically improve the alignment and are not fabricated.**
Finally, present the suggested revised version of the resume content. This should be a realistic and optimized version of the original resume, incorporating the suggested changes within the original section structure. Do NOT invent experience or skills that are not at least partially supported by the original resume content; focus on strategically highlighting and re-framing existing information to better match the job description and improve the score.
Ensure the output is strictly in the specified JSON format. The 'updated_resume_content_suggestion' field should contain the full text of the suggested updated resume sections."""),
("human", """Resume Text:
{resume_text}
Job Description Text:
{job_description_text}"""),
])
structured_llm = llm.with_structured_output(ResumeAnalysis)
analysis_chain = prompt | structured_llm
# Perform initial analysis
with st.spinner("Analyzing resume..."):
initial_analysis = analysis_chain.invoke({
"resume_text": resume_text,
"job_description_text": job_description_text
})
# Prepare updated resume text
suggested_updated_resume_text_sections = ""
for section in initial_analysis.updated_resume_content_suggestion:
suggested_updated_resume_text_sections += f"{section.section_name}:\n{section.content}\n\n"
# Score the updated resume
with st.spinner("Calculating improved score..."):
scoring_prompt = ChatPromptTemplate.from_messages([
("system", """You are an expert resume and job description matcher.
Your task is to assess how well the provided resume text matches the job description and provide a single integer score out of 100 based on ATS scoring principles. Focus on the alignment of skills, experience, and keywords. Provide only the integer score."""),
("human", """Assess the match score between the following resume text and job description.
Provide only a single integer score out of 100.
Resume Text:
{resume_text}
Job Description Text:
{job_description_text}"""),
])
scoring_llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
scoring_chain = scoring_prompt | scoring_llm
updated_score_response = scoring_chain.invoke({
"resume_text": suggested_updated_resume_text_sections.strip(),
"job_description_text": job_description_text
})
# Parse score
try:
updated_score_text = updated_score_response.content.strip()
match = re.search(r'\d+', updated_score_text)
if match:
updated_score = int(match.group(0))
updated_score = max(0, min(100, updated_score))
else:
updated_score = -1
except:
updated_score = -1
# Prepare result - using model_dump() instead of dict() for Pydantic v2
result = {
"initial_analysis": initial_analysis.model_dump(),
"initial_score": initial_analysis.initial_match_score,
"suggested_resume_updates_description": initial_analysis.suggested_resume_updates,
"suggested_updated_resume_content_json": [sec.model_dump() for sec in initial_analysis.updated_resume_content_suggestion],
"updated_score": updated_score,
"score_comparison": f"Initial score: {initial_analysis.initial_match_score}, Updated score: {updated_score}"
}
return result
except Exception as e:
st.error(f"An error occurred during analysis: {e}")
return {"error": str(e)}
# Main app
st.title("π― ATS Assassin - Stealth Mode")
st.markdown("Upload your resume and job description to get AI-powered suggestions for improvement to enhance the ATS score.")
# Installation instructions
with st.expander("π¦ Required Dependencies", expanded=False):
st.markdown("""
**Install the following packages:**
```bash
pip install streamlit langchain-core langchain-openai langchain-community
pip install pydantic pdfplumber PyPDF2 pymupdf pillow easyocr
```
**Note:** This version doesn't require poppler! We use PyMuPDF (fitz) instead of pdf2image.
""")
# Sidebar for configuration
with st.sidebar:
st.header("βοΈ Configuration")
# OpenAI API Key
api_key = st.text_input("OpenAI API Key", type="password", help="Enter your OpenAI API key")
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
st.divider()
# Job Description Input Method
st.subheader("π Job Description Input")
input_method = st.radio(
"Choose input method:",
["Upload PDF", "Enter URL"],
help="Select how you want to provide the job description"
)
# Main content area
col1, col2 = st.columns([1, 1])
with col1:
st.subheader("π Upload Resume")
resume_file = st.file_uploader("Choose your resume PDF", type=['pdf'])
if resume_file:
st.success(f"β
Resume uploaded: {resume_file.name}")
with col2:
st.subheader("πΌ Job Description")
job_description_text = None
if input_method == "Upload PDF":
job_file = st.file_uploader("Choose job description PDF", type=['pdf'])
if job_file:
st.success(f"β
Job description uploaded: {job_file.name}")
else:
job_url = st.text_input("Enter job description URL", placeholder="https://example.com/job-posting")
if job_url:
st.success(f"β
URL provided")
# Analyze button
if st.button("π Analyze Resume", type="primary", use_container_width=True):
# Validation
if not api_key:
st.error("Please enter your OpenAI API key in the sidebar.")
elif not resume_file:
st.error("Please upload your resume.")
elif input_method == "Upload PDF" and not job_file:
st.error("Please upload the job description PDF.")
elif input_method == "Enter URL" and not job_url:
st.error("Please enter the job description URL.")
else:
try:
# Extract resume text
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_resume:
tmp_resume.write(resume_file.read())
tmp_resume.flush()
resume_text = extract_text_from_pdf(tmp_resume.name)
try:
os.unlink(tmp_resume.name)
except:
pass
# Extract job description
if input_method == "Upload PDF":
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_job:
tmp_job.write(job_file.read())
tmp_job.flush()
job_description_text = extract_text_from_pdf(tmp_job.name)
try:
os.unlink(tmp_job.name)
except:
pass
else:
with st.spinner("Fetching job description from URL..."):
loader = WebBaseLoader(job_url)
docs = loader.load()
# Try to get description from metadata, fallback to page content
if docs and len(docs) > 0:
job_description_text = docs[0].metadata.get("description", docs[0].page_content)
else:
st.error("Could not fetch content from the URL")
job_description_text = None
if job_description_text:
# Perform analysis
result = analyze_and_update_resume(resume_text, job_description_text)
if "error" not in result:
st.session_state.analysis_complete = True
st.session_state.analysis_result = result
else:
st.error(f"Analysis failed: {result['error']}")
else:
st.error("Could not extract job description text")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
st.exception(e)
# Display results
if st.session_state.analysis_complete and st.session_state.analysis_result:
result = st.session_state.analysis_result
# Animated header
st.markdown('<div class="results-header"><h1>π Analysis Results</h1></div>', unsafe_allow_html=True)
# Score comparison with enhanced styling
col1, col2, col3 = st.columns([1, 1, 1])
initial_score = result['initial_score']
updated_score = result['updated_score']
score_diff = updated_score - initial_score if updated_score != -1 else 0
with col1:
st.markdown('<div class="score-card score-card-initial">', unsafe_allow_html=True)
# Progress ring SVG
progress_initial = initial_score / 100 * 377 # 377 is the circumference of the circle
st.markdown(f'''
<div class="progress-ring">
<svg width="120" height="120">
<circle class="progress-ring-circle" cx="60" cy="60" r="50"></circle>
<circle class="progress-ring-circle-progress" cx="60" cy="60" r="50"
style="stroke-dasharray: 377; stroke-dashoffset: {377 - progress_initial};">
</circle>
<text x="60" y="70" text-anchor="middle" fill="white" style="font-size: 28px; font-weight: bold;">
{initial_score}
</text>
</svg>
</div>
<div class="score-label">Initial Score</div>
''', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
with col2:
st.markdown('<div class="score-card score-card-improved">', unsafe_allow_html=True)
if updated_score != -1:
progress_updated = updated_score / 100 * 377
st.markdown(f'''
<div class="progress-ring">
<svg width="120" height="120">
<circle class="progress-ring-circle" cx="60" cy="60" r="50"></circle>
<circle class="progress-ring-circle-progress" cx="60" cy="60" r="50"
style="stroke-dasharray: 377; stroke-dashoffset: {377 - progress_updated};">
</circle>
<text x="60" y="70" text-anchor="middle" fill="white" style="font-size: 28px; font-weight: bold;">
{updated_score}
</text>
</svg>
</div>
<div class="score-label">Improved Score</div>
<div class="score-delta">
<span class="arrow-up"></span>
<span>+{score_diff} points</span>
</div>
''', unsafe_allow_html=True)
else:
st.markdown('<div class="score-value">N/A</div><div class="score-label">Improved Score</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
with col3:
st.markdown('<div class="score-card score-card-improvement">', unsafe_allow_html=True)
if updated_score != -1 and initial_score > 0:
improvement_percentage = (score_diff / initial_score * 100)
st.markdown(f'''
<div style="margin-top: 20px;">
<div class="score-value">{improvement_percentage:.1f}%</div>
<div class="score-label">Total Improvement</div>
<div class="score-delta">
<span class="arrow-up"></span>
<span>{score_diff} points gained</span>
</div>
</div>
''', unsafe_allow_html=True)
else:
st.markdown('<div class="score-value">N/A</div><div class="score-label">Improvement</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Add some spacing
st.markdown("<br>", unsafe_allow_html=True)
# Issues identified with better styling
with st.expander("π **Issues Identified**", expanded=True):
st.markdown(f"""
<div style="background-color: #fff3cd; padding: 1.5rem; border-radius: 10px; border-left: 4px solid #ffc107; color: #856404;">
<p style="margin: 0; line-height: 1.6; font-size: 1rem;">
{result['initial_analysis']['score_issues']}
</p>
</div>
""", unsafe_allow_html=True)
# Suggestions with better styling
with st.expander("π‘ **Improvement Suggestions**", expanded=True):
st.markdown(f"""
<div style="background-color: #d4edda; padding: 1.5rem; border-radius: 10px; border-left: 4px solid #28a745; color: #155724;">
<p style="margin: 0; line-height: 1.6; font-size: 1rem;">
{result['suggested_resume_updates_description']}
</p>
</div>
""", unsafe_allow_html=True)
# Original sections
st.divider()
st.subheader("π Original Resume Sections")
for section in result['initial_analysis']['resume_sections']:
with st.expander(f"**{section['section_name']}**"):
st.text(section['content'])
# Suggested updated sections
st.divider()
st.subheader("β¨ Suggested Updated Resume Sections")
for section in result['suggested_updated_resume_content_json']:
with st.expander(f"**{section['section_name']}** (Optimized)"):
st.text(section['content'])
# Download button for updated resume
st.divider()
updated_resume_text = ""
for section in result['suggested_updated_resume_content_json']:
updated_resume_text += f"{section['section_name']}:\n{section['content']}\n\n"
st.download_button(
label="π₯ Download Optimized Resume (Text)",
data=updated_resume_text,
file_name="optimized_resume.txt",
mime="text/plain",
use_container_width=True
)
|