File size: 6,170 Bytes
9923cde 5ec76ac 9923cde 9380b17 9923cde 5ec76ac 9923cde 5ec76ac 9923cde 5ec76ac 9923cde 5ec76ac 9923cde 5ec76ac 9923cde 5ec76ac 9923cde 5ec76ac 9923cde 5ec76ac 9923cde bd88854 5ec76ac 9923cde 5ec76ac 9923cde 5ec76ac 9923cde 5ec76ac 9923cde 5ec76ac 9923cde 5ec76ac 9923cde 5ec76ac 9923cde 5ec76ac 9923cde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import os
import streamlit as st
import google.generativeai as genai
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import HumanMessage, SystemMessage
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from dotenv import load_dotenv
from langchain.embeddings import HuggingFaceEmbeddings
from sentence_transformers import SentenceTransformer
import pysqlite3
import sys
sys.modules['sqlite3'] = pysqlite3
import os
os.environ["TRANSFORMERS_OFFLINE"] = "1"
# Retrieve Google API key
GOOGLE_API_KEY = "AIzaSyAytkzRS0Xp0pCyo6WqKJ4m1o330bF-gPk"
if not GOOGLE_API_KEY:
raise ValueError("Gemini API key not found. Please set it in the .env file.")
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
# Streamlit app configuration
st.set_page_config(page_title="English Chatbot", layout="centered")
st.title("English Tutor Bot")
# Initialize Google Generative AI LLM
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro-latest",
temperature=0.2,
max_tokens=None,
timeout=None,
max_retries=2,
)
# Initialize embeddings using HuggingFace
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def load_preprocessed_vectorstore():
try:
loader = PyPDFLoader("sound.pdf")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
separators=["\n\n", "\n", ". ", " ", ""],
chunk_size=3000,
chunk_overlap=1000
)
document_chunks = text_splitter.split_documents(documents)
vector_store = Chroma.from_documents(
embedding=embeddings,
documents=document_chunks,
persist_directory="./data32"
)
return vector_store
except Exception as e:
st.error(f"Error creating vector store: {e}")
return None
def get_context_retriever_chain(vector_store):
retriever = vector_store.as_retriever()
prompt = ChatPromptTemplate.from_messages([
MessagesPlaceholder(variable_name="chat_history"),
("human", "{input}"),
("system", """Given the chat history and the latest user question, which might reference context in the chat history, Answer the question
by taking reference from the document.
If the question is directly addressed within the provided document, provide a relevant answer.
If the question is not explicitly addressed in the document, return the following message:
'This question is beyond the scope of the available information. Please contact your mentor for further assistance.'
Do NOT answer the question directly, just reformulate it if needed and otherwise return it as is.""")
])
retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
return retriever_chain
def get_conversational_chain(retriever_chain):
prompt = ChatPromptTemplate.from_messages([
("system", """Hello! I'm your English Tutor, I am here to help you with learning english and can also take quiz to test your skills.
Note: I will only provide information that is available within our database to ensure accuracy. Let's get started!
"""
"\n\n"
"{context}"),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{input}")
])
stuff_documents_chain = create_stuff_documents_chain(llm, prompt)
return create_retrieval_chain(retriever_chain, stuff_documents_chain)
def get_response(user_query):
retriever_chain = get_context_retriever_chain(st.session_state.vector_store)
conversation_rag_chain = get_conversational_chain(retriever_chain)
formatted_chat_history = []
for message in st.session_state.chat_history:
if isinstance(message, HumanMessage):
formatted_chat_history.append({"author": "user", "content": message.content})
elif isinstance(message, SystemMessage):
formatted_chat_history.append({"author": "assistant", "content": message.content})
response = conversation_rag_chain.invoke({
"chat_history": formatted_chat_history,
"input": user_query
})
return response['answer']
# Load the preprocessed vector store from the local directory
st.session_state.vector_store = load_preprocessed_vectorstore()
# Initialize chat history if not present
if "chat_history" not in st.session_state:
st.session_state.chat_history = [
{"author": "assistant", "content": "Hello, I am Precollege. How can I help you?"}
]
# Main app logic
if st.session_state.get("vector_store") is None:
st.error("Failed to load preprocessed data. Please ensure the data exists in './data' directory.")
else:
# Display chat history
with st.container():
for message in st.session_state.chat_history:
if message["author"] == "assistant":
with st.chat_message("system"):
st.write(message["content"])
elif message["author"] == "user":
with st.chat_message("human"):
st.write(message["content"])
# Add user input box below the chat
with st.container():
with st.form(key="chat_form", clear_on_submit=True):
user_query = st.text_input("Type your message here...", key="user_input")
submit_button = st.form_submit_button("Send")
if submit_button and user_query:
# Get bot response
response = get_response(user_query)
st.session_state.chat_history.append({"author": "user", "content": user_query})
st.session_state.chat_history.append({"author": "assistant", "content": response})
# Rerun the app to refresh the chat display
st.rerun() |