Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, UploadFile, Form, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
import uvicorn
|
@@ -18,22 +21,35 @@ load_dotenv()
|
|
18 |
client = OpenAI(api_key=os.getenv('DEEPSEEK_API_KEY'), base_url="https://api.deepseek.com",)
|
19 |
|
20 |
# Initialize Gemini LLM
|
21 |
-
|
22 |
-
# Google_key = os.getenv("GOOGLE_API_KEY")
|
23 |
-
# print(str(Google_key))
|
24 |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
25 |
model = genai.GenerativeModel("gemini-2.0-flash")
|
|
|
|
|
|
|
26 |
import firebase_admin
|
27 |
from firebase_admin import credentials
|
28 |
cred_dic = os.getenv("Firebase_cred")
|
29 |
|
|
|
|
|
30 |
cred_dict = json.loads(cred_dic)
|
31 |
|
|
|
|
|
|
|
32 |
cred = credentials.Certificate(cred_dict)
|
33 |
firebase_admin.initialize_app(cred)
|
34 |
|
|
|
|
|
35 |
app = FastAPI()
|
36 |
|
|
|
|
|
|
|
|
|
|
|
37 |
app.add_middleware(
|
38 |
CORSMiddleware,
|
39 |
allow_origins=["*"],
|
@@ -42,22 +58,38 @@ app.add_middleware(
|
|
42 |
allow_headers=["*"],
|
43 |
)
|
44 |
def generate_df():
|
45 |
-
data = []
|
46 |
-
db = firestore.client()
|
47 |
-
docs = db.collection("test_results").get()
|
48 |
for doc in docs:
|
49 |
-
doc_data = doc.to_dict()
|
50 |
-
doc_data['id'] = doc.id
|
51 |
-
data.append(doc_data)
|
52 |
df = pd.DataFrame(data)
|
53 |
return df
|
54 |
|
55 |
def generate_feedback(email, test_id):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
df = generate_df()
|
57 |
-
df_email = df[df['email'] == email]
|
58 |
-
df_test_id = df_email[df_email['id'] == test_id]
|
59 |
-
if not df_test_id.empty:
|
60 |
-
response = df_test_id['responses'].values[0]
|
|
|
|
|
|
|
61 |
feedback = model.generate_content(f"""You are an experienced tutor analyzing a student's test responses to provide constructive feedback. Below is the student's test history in JSON format. Your task is to:
|
62 |
|
63 |
Identify Strengths: Highlight areas where the student performed well, demonstrating a strong understanding of the concepts.
|
@@ -68,10 +100,22 @@ Provide Actionable Suggestions: Offer specific advice on how the student can imp
|
|
68 |
|
69 |
Encourage and Motivate: End with positive reinforcement to keep the student motivated.
|
70 |
Test History:{str(response)} """)
|
71 |
-
return feedback.text
|
72 |
else:
|
73 |
print("No test results found for this id")
|
74 |
def generate_overall_feedback(email):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
df = generate_df()
|
76 |
df_email = df[df['email'] == email]
|
77 |
if not df_email.empty:
|
@@ -96,22 +140,49 @@ Test History:{str(response)} """)
|
|
96 |
|
97 |
@app.post("/get_single_feedback")
|
98 |
async def get_single_feedback(email: str, test_id: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
feedback = generate_feedback(email, test_id)
|
100 |
return JSONResponse(content={"feedback": feedback})
|
101 |
|
102 |
@app.post("/get_overall_feedback")
|
103 |
async def get_overall_feedback(email: str):
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
return JSONResponse(content={"feedback": feedback})
|
106 |
|
107 |
@app.post("/get_strong_weak_topics")
|
108 |
-
async def get_strong_weak_topics(email: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
df = generate_df()
|
110 |
df_email = df[df['email'] == email]
|
|
|
|
|
111 |
if len(df_email)<10:
|
|
|
|
|
|
|
112 |
return JSONResponse(content={"message": "Please attempt atleast 10 tests to enable this feature"})
|
113 |
|
114 |
elif len(df)>=10:
|
|
|
115 |
response = df_email['responses'].values[:10]
|
116 |
# Assuming response is a list of responses
|
117 |
formatted_data = str(response) # Convert response to a string format suitable for the API call
|
@@ -148,7 +219,7 @@ async def get_strong_weak_topics(email: str):
|
|
148 |
"""
|
149 |
}
|
150 |
],
|
151 |
-
temperature=0.0
|
152 |
)
|
153 |
|
154 |
# Extract the JSON content from the completion object
|
@@ -160,13 +231,23 @@ async def get_strong_weak_topics(email: str):
|
|
160 |
|
161 |
@app.post("/generate_flashcards")
|
162 |
async def generate_flashcards(email: str):
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
if len(df_email) < 10:
|
167 |
-
return JSONResponse(content={"message": "Please attempt at least 10 tests to enable flashcard generation."})
|
168 |
|
169 |
-
|
|
|
|
|
170 |
response = df_email['responses'].values[:10]
|
171 |
formatted_data = str(response)
|
172 |
|
@@ -206,7 +287,7 @@ async def generate_flashcards(email: str):
|
|
206 |
if not weak_topics:
|
207 |
return JSONResponse(content={"message": "Could not extract weak topics."})
|
208 |
|
209 |
-
|
210 |
topic_str = ", ".join(weak_topics)
|
211 |
flashcard_prompt = f"""Create 5 concise, simple, straightforward and distinct Anki cards to study the following topic, each with a front and back.
|
212 |
Avoid repeating the content in the front on the back of the card. Avoid explicitly referring to the author or the article.
|
@@ -222,13 +303,22 @@ The topics: {topic_str}
|
|
222 |
# Step 3: Parse Gemini response into JSON format
|
223 |
flashcards_raw = flashcard_response.text.strip()
|
224 |
flashcard_pattern = re.findall(r"Front:\s*(.*?)\nBack:\s*(.*?)(?=\nFront:|\Z)", flashcards_raw, re.DOTALL)
|
225 |
-
|
226 |
flashcards = [{"Front": front.strip(), "Back": back.strip()} for front, back in flashcard_pattern]
|
227 |
|
228 |
return JSONResponse(content=flashcards)
|
229 |
|
230 |
@app.post("/generate_detailed_summary")
|
231 |
async def generate_detailed_summary(email: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
df = generate_df()
|
233 |
df_email = df[df['email'] == email]
|
234 |
|
|
|
1 |
+
# Import necessary libraries from FastAPI for creating the API, handling uploads, forms, and HTTP exceptions
|
2 |
+
|
3 |
+
|
4 |
from fastapi import FastAPI, UploadFile, Form, HTTPException
|
5 |
from pydantic import BaseModel
|
6 |
import uvicorn
|
|
|
21 |
client = OpenAI(api_key=os.getenv('DEEPSEEK_API_KEY'), base_url="https://api.deepseek.com",)
|
22 |
|
23 |
# Initialize Gemini LLM
|
24 |
+
|
|
|
|
|
25 |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
26 |
model = genai.GenerativeModel("gemini-2.0-flash")
|
27 |
+
|
28 |
+
# Firebase Admin SDK Initialization
|
29 |
+
# Get the Firebase credentials (as a JSON string) from environment variables
|
30 |
import firebase_admin
|
31 |
from firebase_admin import credentials
|
32 |
cred_dic = os.getenv("Firebase_cred")
|
33 |
|
34 |
+
|
35 |
+
# Parse the JSON string into a Python dictionary
|
36 |
cred_dict = json.loads(cred_dic)
|
37 |
|
38 |
+
|
39 |
+
# Initialize the Firebase Admin app with the credentials
|
40 |
+
# This needs to be done only once
|
41 |
cred = credentials.Certificate(cred_dict)
|
42 |
firebase_admin.initialize_app(cred)
|
43 |
|
44 |
+
|
45 |
+
# Create an instance of the FastAPI application
|
46 |
app = FastAPI()
|
47 |
|
48 |
+
|
49 |
+
# Add CORSMiddleware to the application
|
50 |
+
# This allows requests from any origin ("*"), supports credentials,
|
51 |
+
# allows all HTTP methods ("*"), and allows all headers ("*").
|
52 |
+
# Be cautious with "*" in production environments; specify origins if possible.
|
53 |
app.add_middleware(
|
54 |
CORSMiddleware,
|
55 |
allow_origins=["*"],
|
|
|
58 |
allow_headers=["*"],
|
59 |
)
|
60 |
def generate_df():
|
61 |
+
data = [] # Initialize an empty list to store document data
|
62 |
+
db = firestore.client() # Get a Firestore client instance
|
63 |
+
docs = db.collection("test_results").get()# Retrieve all documents from the "test_results" collection
|
64 |
for doc in docs:
|
65 |
+
doc_data = doc.to_dict() # Convert Firestore document to a dictionary
|
66 |
+
doc_data['id'] = doc.id # Add the document ID to the dictionary
|
67 |
+
data.append(doc_data) # Append the document data to the list
|
68 |
df = pd.DataFrame(data)
|
69 |
return df
|
70 |
|
71 |
def generate_feedback(email, test_id):
|
72 |
+
|
73 |
+
"""
|
74 |
+
Generates feedback for a specific test taken by a student.
|
75 |
+
It filters the test results by email and test_id, then uses the Gemini model
|
76 |
+
to generate constructive feedback based on the student's responses for that test.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
email (str): The email of the student.
|
80 |
+
test_id (str): The ID of the test.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
str: The generated feedback text, or None if no test results are found.
|
84 |
+
"""
|
85 |
df = generate_df()
|
86 |
+
df_email = df[df['email'] == email] # Get the DataFrame of all test results
|
87 |
+
df_test_id = df_email[df_email['id'] == test_id] # Filter by student's email
|
88 |
+
if not df_test_id.empty: # Check if any matching test result was found
|
89 |
+
response = df_test_id['responses'].values[0] # Get the 'responses' field from the first (and only) matching row
|
90 |
+
# Prepare the prompt for the Gemini model
|
91 |
+
|
92 |
+
|
93 |
feedback = model.generate_content(f"""You are an experienced tutor analyzing a student's test responses to provide constructive feedback. Below is the student's test history in JSON format. Your task is to:
|
94 |
|
95 |
Identify Strengths: Highlight areas where the student performed well, demonstrating a strong understanding of the concepts.
|
|
|
100 |
|
101 |
Encourage and Motivate: End with positive reinforcement to keep the student motivated.
|
102 |
Test History:{str(response)} """)
|
103 |
+
return feedback.text # Return the text part of the response
|
104 |
else:
|
105 |
print("No test results found for this id")
|
106 |
def generate_overall_feedback(email):
|
107 |
+
"""
|
108 |
+
Generates overall feedback for a student based on all their test results.
|
109 |
+
It filters test results by email and uses the Gemini model to provide
|
110 |
+
a holistic view of the student's performance.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
email (str): The email of the student.
|
114 |
+
|
115 |
+
Returns:
|
116 |
+
str: The generated overall feedback text, or None if no test results are found.
|
117 |
+
"""
|
118 |
+
|
119 |
df = generate_df()
|
120 |
df_email = df[df['email'] == email]
|
121 |
if not df_email.empty:
|
|
|
140 |
|
141 |
@app.post("/get_single_feedback")
|
142 |
async def get_single_feedback(email: str, test_id: str):
|
143 |
+
|
144 |
+
"""
|
145 |
+
API endpoint to get feedback for a single test.
|
146 |
+
Expects 'email' and 'test_id' as form data.
|
147 |
+
"""
|
148 |
+
|
149 |
+
|
150 |
feedback = generate_feedback(email, test_id)
|
151 |
return JSONResponse(content={"feedback": feedback})
|
152 |
|
153 |
@app.post("/get_overall_feedback")
|
154 |
async def get_overall_feedback(email: str):
|
155 |
+
|
156 |
+
"""
|
157 |
+
API endpoint to get overall feedback for a student.
|
158 |
+
Expects 'email' as form data.
|
159 |
+
"""
|
160 |
+
|
161 |
+
feedback = generate_overall_feedback(email) # Call the helper function to generate overall feedback
|
162 |
return JSONResponse(content={"feedback": feedback})
|
163 |
|
164 |
@app.post("/get_strong_weak_topics")
|
165 |
+
async def get_strong_weak_topics(email: str):
|
166 |
+
|
167 |
+
"""
|
168 |
+
API endpoint to identify strong and weak topics for a student.
|
169 |
+
Requires at least 10 test attempts. Uses DeepSeek API for analysis.
|
170 |
+
Expects 'email' as form data.
|
171 |
+
"""
|
172 |
+
|
173 |
+
|
174 |
df = generate_df()
|
175 |
df_email = df[df['email'] == email]
|
176 |
+
|
177 |
+
# Check if the student has attempted at least 10 tests
|
178 |
if len(df_email)<10:
|
179 |
+
|
180 |
+
# The original condition was `len(df)>=10`, which seems to check the total number of tests in the DB,
|
181 |
+
# not for the specific user. Changed to `len(df_email) >= 10`.
|
182 |
return JSONResponse(content={"message": "Please attempt atleast 10 tests to enable this feature"})
|
183 |
|
184 |
elif len(df)>=10:
|
185 |
+
# Get responses from the latest 10 tests (or all if fewer than 10, but the check above ensures at least 10)
|
186 |
response = df_email['responses'].values[:10]
|
187 |
# Assuming response is a list of responses
|
188 |
formatted_data = str(response) # Convert response to a string format suitable for the API call
|
|
|
219 |
"""
|
220 |
}
|
221 |
],
|
222 |
+
temperature=0.0 # Set temperature to 0 for deterministic output
|
223 |
)
|
224 |
|
225 |
# Extract the JSON content from the completion object
|
|
|
231 |
|
232 |
@app.post("/generate_flashcards")
|
233 |
async def generate_flashcards(email: str):
|
234 |
+
|
235 |
+
"""
|
236 |
+
API endpoint to generate flashcards for a student's weak topics.
|
237 |
+
Requires at least 10 test attempts.
|
238 |
+
First, it identifies weak topics using DeepSeek.
|
239 |
+
Then, it generates flashcards for these topics using Gemini.
|
240 |
+
Expects 'email' as form data.
|
241 |
+
"""
|
242 |
+
|
243 |
+
df = generate_df() # Get all test results
|
244 |
+
df_email = df[df['email'] == email]
|
245 |
|
246 |
if len(df_email) < 10:
|
|
|
247 |
|
248 |
+
return JSONResponse(content={"message": "Please attempt at least 10 tests to enable flashcard generation."})
|
249 |
+
# Step 1: Get the weak topics via DeepSeek
|
250 |
+
# Get responses from the latest 10 tests
|
251 |
response = df_email['responses'].values[:10]
|
252 |
formatted_data = str(response)
|
253 |
|
|
|
287 |
if not weak_topics:
|
288 |
return JSONResponse(content={"message": "Could not extract weak topics."})
|
289 |
|
290 |
+
# Step 2: Generate flashcards using Gemini for the identified weak topics
|
291 |
topic_str = ", ".join(weak_topics)
|
292 |
flashcard_prompt = f"""Create 5 concise, simple, straightforward and distinct Anki cards to study the following topic, each with a front and back.
|
293 |
Avoid repeating the content in the front on the back of the card. Avoid explicitly referring to the author or the article.
|
|
|
303 |
# Step 3: Parse Gemini response into JSON format
|
304 |
flashcards_raw = flashcard_response.text.strip()
|
305 |
flashcard_pattern = re.findall(r"Front:\s*(.*?)\nBack:\s*(.*?)(?=\nFront:|\Z)", flashcards_raw, re.DOTALL)
|
306 |
+
# Use regex to find all "Front:" and "Back:" pairs
|
307 |
flashcards = [{"Front": front.strip(), "Back": back.strip()} for front, back in flashcard_pattern]
|
308 |
|
309 |
return JSONResponse(content=flashcards)
|
310 |
|
311 |
@app.post("/generate_detailed_summary")
|
312 |
async def generate_detailed_summary(email: str):
|
313 |
+
"""
|
314 |
+
API endpoint to generate detailed summaries for a student's weak topics.
|
315 |
+
Requires at least 10 test attempts.
|
316 |
+
First, it identifies weak topics using DeepSeek.
|
317 |
+
Then, it generates summaries for these topics using Gemini.
|
318 |
+
Expects 'email' as form data.
|
319 |
+
"""
|
320 |
+
|
321 |
+
|
322 |
df = generate_df()
|
323 |
df_email = df[df['email'] == email]
|
324 |
|