Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,168 +1,171 @@
|
|
1 |
-
import os
|
2 |
-
import streamlit as st
|
3 |
-
import google.generativeai as genai
|
4 |
-
# from langchain_openai import OpenAI /
|
5 |
-
from langchain_openai import OpenAIEmbeddings
|
6 |
-
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
7 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
-
# from langchain_openai import OpenAIEmbeddings
|
9 |
-
from langchain_community.document_loaders import Docx2txtLoader
|
10 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
-
from langchain_community.vectorstores import Chroma
|
12 |
-
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
13 |
-
from langchain_core.messages import HumanMessage, SystemMessage
|
14 |
-
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
15 |
-
from langchain.chains.combine_documents import create_stuff_documents_chain
|
16 |
-
from dotenv import load_dotenv
|
17 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
18 |
-
|
19 |
-
import
|
20 |
-
|
21 |
-
|
22 |
-
import
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
return
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
retriever_chain
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
#
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
with st.chat_message("
|
150 |
-
st.write(message["content"])
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
st.
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import google.generativeai as genai
|
4 |
+
# from langchain_openai import OpenAI /
|
5 |
+
from langchain_openai import OpenAIEmbeddings
|
6 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
# from langchain_openai import OpenAIEmbeddings
|
9 |
+
from langchain_community.document_loaders import Docx2txtLoader
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
from langchain_community.vectorstores import Chroma
|
12 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
13 |
+
from langchain_core.messages import HumanMessage, SystemMessage
|
14 |
+
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
15 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
16 |
+
from dotenv import load_dotenv
|
17 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
18 |
+
|
19 |
+
from sentence_transformers import SentenceTransformer
|
20 |
+
|
21 |
+
import pysqlite3
|
22 |
+
import sys
|
23 |
+
sys.modules['sqlite3'] = pysqlite3
|
24 |
+
|
25 |
+
import os
|
26 |
+
os.environ["TRANSFORMERS_OFFLINE"] = "1"
|
27 |
+
|
28 |
+
# Retrieve OpenAI API key from the .env file
|
29 |
+
GOOGLE_API_KEY = "AIzaSyC1-QUzA45IlCosX__sKlzNAgVZGEaHc0c"
|
30 |
+
# GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
31 |
+
# OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
32 |
+
|
33 |
+
if not GOOGLE_API_KEY:
|
34 |
+
raise ValueError("Gemini API key not found. Please set it in the .env file.")
|
35 |
+
|
36 |
+
# Set OpenAI API key
|
37 |
+
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
|
38 |
+
# os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
|
39 |
+
# Streamlit app configuration
|
40 |
+
st.set_page_config(page_title="College Data Chatbot", layout="centered")
|
41 |
+
st.title("PreCollege Chatbot GEMINI+ HuggingFace Embeddings")
|
42 |
+
|
43 |
+
# Initialize OpenAI LLM
|
44 |
+
llm = ChatGoogleGenerativeAI(
|
45 |
+
model="gemini-1.5-pro-latest",
|
46 |
+
temperature=0.2, # Slightly higher for varied responses
|
47 |
+
max_tokens=None,
|
48 |
+
timeout=None,
|
49 |
+
max_retries=2,
|
50 |
+
)
|
51 |
+
|
52 |
+
# Initialize embeddings using OpenAI
|
53 |
+
embeddings = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
54 |
+
|
55 |
+
def load_preprocessed_vectorstore():
|
56 |
+
try:
|
57 |
+
loader = Docx2txtLoader("./Updated_structred_aman.docx")
|
58 |
+
documents = loader.load()
|
59 |
+
|
60 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
61 |
+
separators=["\n\n", "\n", ". ", " ", ""],
|
62 |
+
chunk_size=3000,
|
63 |
+
chunk_overlap=1000)
|
64 |
+
|
65 |
+
document_chunks = text_splitter.split_documents(documents)
|
66 |
+
|
67 |
+
vector_store = Chroma.from_documents(
|
68 |
+
|
69 |
+
embedding=embeddings,
|
70 |
+
documents=document_chunks,
|
71 |
+
persist_directory="./data32"
|
72 |
+
)
|
73 |
+
return vector_store
|
74 |
+
except Exception as e:
|
75 |
+
st.error(f"Error creating vector store: {e}")
|
76 |
+
return None
|
77 |
+
|
78 |
+
def get_context_retriever_chain(vector_store):
|
79 |
+
"""Creates a history-aware retriever chain."""
|
80 |
+
retriever = vector_store.as_retriever()
|
81 |
+
|
82 |
+
# Define the prompt for the retriever chain
|
83 |
+
prompt = ChatPromptTemplate.from_messages([
|
84 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
85 |
+
("human", "{input}"),
|
86 |
+
("system", """Given the chat history and the latest user question, which might reference context in the chat history,
|
87 |
+
formulate a standalone question that can be understood without the chat history.
|
88 |
+
If the question is directly addressed within the provided document, provide a relevant answer.
|
89 |
+
If the question is not explicitly addressed in the document, return the following message:
|
90 |
+
'This question is beyond the scope of the available information. Please contact your mentor for further assistance.'
|
91 |
+
Do NOT answer the question directly, just reformulate it if needed and otherwise return it as is.""")
|
92 |
+
])
|
93 |
+
|
94 |
+
retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
|
95 |
+
return retriever_chain
|
96 |
+
|
97 |
+
def get_conversational_chain(retriever_chain):
|
98 |
+
"""Creates a conversational chain using the retriever chain."""
|
99 |
+
prompt = ChatPromptTemplate.from_messages([
|
100 |
+
("system", """Hello! I'm your PreCollege AI assistant, here to help you with your JEE Mains journey.
|
101 |
+
Please provide your JEE Mains rank and preferred engineering branches or colleges,
|
102 |
+
and I'll give you tailored advice based on our verified database.
|
103 |
+
Note: I will only provide information that is available within our database to ensure accuracy. Let's get started!
|
104 |
+
"""
|
105 |
+
"\n\n"
|
106 |
+
"{context}"),
|
107 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
108 |
+
("human", "{input}")
|
109 |
+
])
|
110 |
+
|
111 |
+
stuff_documents_chain = create_stuff_documents_chain(llm, prompt)
|
112 |
+
return create_retrieval_chain(retriever_chain, stuff_documents_chain)
|
113 |
+
|
114 |
+
def get_response(user_query):
|
115 |
+
retriever_chain = get_context_retriever_chain(st.session_state.vector_store)
|
116 |
+
conversation_rag_chain = get_conversational_chain(retriever_chain)
|
117 |
+
|
118 |
+
formatted_chat_history = []
|
119 |
+
for message in st.session_state.chat_history:
|
120 |
+
if isinstance(message, HumanMessage):
|
121 |
+
formatted_chat_history.append({"author": "user", "content": message.content})
|
122 |
+
elif isinstance(message, SystemMessage):
|
123 |
+
formatted_chat_history.append({"author": "assistant", "content": message.content})
|
124 |
+
|
125 |
+
response = conversation_rag_chain.invoke({
|
126 |
+
"chat_history": formatted_chat_history,
|
127 |
+
"input": user_query
|
128 |
+
})
|
129 |
+
|
130 |
+
return response['answer']
|
131 |
+
|
132 |
+
# Load the preprocessed vector store from the local directory
|
133 |
+
st.session_state.vector_store = load_preprocessed_vectorstore()
|
134 |
+
|
135 |
+
# Initialize chat history if not present
|
136 |
+
if "chat_history" not in st.session_state:
|
137 |
+
st.session_state.chat_history = [
|
138 |
+
{"author": "assistant", "content": "Hello, I am Precollege. How can I help you?"}
|
139 |
+
]
|
140 |
+
|
141 |
+
# Main app logic
|
142 |
+
if st.session_state.get("vector_store") is None:
|
143 |
+
st.error("Failed to load preprocessed data. Please ensure the data exists in './data' directory.")
|
144 |
+
else:
|
145 |
+
# Display chat history
|
146 |
+
with st.container():
|
147 |
+
for message in st.session_state.chat_history:
|
148 |
+
if message["author"] == "assistant":
|
149 |
+
with st.chat_message("system"):
|
150 |
+
st.write(message["content"])
|
151 |
+
elif message["author"] == "user":
|
152 |
+
with st.chat_message("human"):
|
153 |
+
st.write(message["content"])
|
154 |
+
|
155 |
+
# Add user input box below the chat
|
156 |
+
with st.container():
|
157 |
+
with st.form(key="chat_form", clear_on_submit=True):
|
158 |
+
user_query = st.text_input("Type your message here...", key="user_input")
|
159 |
+
submit_button = st.form_submit_button("Send")
|
160 |
+
|
161 |
+
if submit_button and user_query:
|
162 |
+
# Get bot response
|
163 |
+
response = get_response(user_query)
|
164 |
+
st.session_state.chat_history.append({"author": "user", "content": user_query})
|
165 |
+
st.session_state.chat_history.append({"author": "assistant", "content": response})
|
166 |
+
|
167 |
+
# Rerun the app to refresh the chat display
|
168 |
+
st.rerun()
|
169 |
+
|
170 |
+
|
171 |
+
""""""
|