ak0601 commited on
Commit
ea99d48
·
1 Parent(s): f4b14bc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -38
app.py CHANGED
@@ -1,41 +1,7 @@
1
  import gradio as gr
2
- import tensorflow as tf
3
- from tensorflow.keras.preprocessing import image
4
- import matplotlib.pyplot as plt
5
- import numpy as np
6
- from PIL import Image as PIL_Image
7
- # Load the model
8
- model = tf.keras.models.load_model('dogcat_model_bak.h5')
9
 
10
- def classify_image(input_image):
11
- pil_img = PIL_Image.fromarray(input_image, 'RGB')
12
- # Preprocess the image
13
- img1 = pil_img.resize((64, 64))
14
- img2 = pil_img
15
- img = image.img_to_array(img1)
16
- img = img / 255.0
17
- img = np.expand_dims(img, axis=0)
18
- # Make prediction
19
- prediction = model.predict(img)
20
 
21
- # Display prediction result on the image
22
- if prediction[0][0] > 0.5:
23
- value = 'Dog: %1.2f' % prediction[0][0]
24
- plt.text(20, 62, value, color='red', fontsize=18, bbox=dict(facecolor='white', alpha=0.8))
25
- else:
26
- value = 'Cat: %1.2f' % (1.0 - prediction[0][0])
27
- plt.text(20, 62, value, color='red', fontsize=18, bbox=dict(facecolor='white', alpha=0.8))
28
-
29
- plt.imshow(img2)
30
- plt.axis('off') # Hide axis for better visualization
31
- plt.show()
32
-
33
- return img2 # Return the image with prediction annotations
34
-
35
- # Interface creation using Gradio
36
- inputs = gr.Image()
37
- interface = gr.Interface(fn = classify_image, inputs=gr.Image(),outputs=classify_image(inputs))
38
- # Load and pre, capture_session=True)
39
-
40
- # Launch the Gradio app
41
- interface.launch()
 
1
  import gradio as gr
 
 
 
 
 
 
 
2
 
3
+ def image_classifier(inp):
4
+ return {'cat': 0.3, 'dog': 0.7}
 
 
 
 
 
 
 
 
5
 
6
+ demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label")
7
+ demo.launch()