Spaces:
Running
Running
File size: 20,537 Bytes
a21823a 6baa6c7 a21823a d1bb0a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import streamlit as st
import pandas as pd
import json
import os
from pydantic import BaseModel, Field
from typing import List, Set, Dict, Any, Optional
import time
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
import gspread
from google.oauth2 import service_account
st.set_page_config(
page_title="Candidate Matching App",
page_icon="π¨βπ»π―",
layout="wide"
)
# Define pydantic model for structured output
class Shortlist(BaseModel):
fit_score: float = Field(description="A score between 0 and 10 indicating how closely the candidate profile matches the job requirements.")
candidate_name: str = Field(description="The name of the candidate.")
candidate_url: str = Field(description="The URL of the candidate's LinkedIn profile.")
candidate_summary: str = Field(description="A brief summary of the candidate's skills and experience along with its educational background.")
candidate_location: str = Field(description="The location of the candidate.")
justification: str = Field(description="Justification for the shortlisted candidate with the fit score")
# Function to parse and normalize tech stacks
def parse_tech_stack(stack):
if pd.isna(stack) or stack == "" or stack is None:
return set()
if isinstance(stack, set):
return stack
try:
# Handle potential string representation of sets
if isinstance(stack, str) and stack.startswith("{") and stack.endswith("}"):
# This could be a string representation of a set
items = stack.strip("{}").split(",")
return set(item.strip().strip("'\"") for item in items if item.strip())
return set(map(lambda x: x.strip().lower(), str(stack).split(',')))
except Exception as e:
st.error(f"Error parsing tech stack: {e}")
return set()
def display_tech_stack(stack_set):
if isinstance(stack_set, set):
return ", ".join(sorted(stack_set))
return str(stack_set)
def get_matching_candidates(job_stack, candidates_df):
"""Find candidates with matching tech stack for a specific job"""
matched = []
job_stack_set = parse_tech_stack(job_stack)
for _, candidate in candidates_df.iterrows():
candidate_stack = parse_tech_stack(candidate['Key Tech Stack'])
common = job_stack_set & candidate_stack
if len(common) >= 2:
matched.append({
"Name": candidate["Full Name"],
"URL": candidate["LinkedIn URL"],
"Degree & Education": candidate["Degree & University"],
"Years of Experience": candidate["Years of Experience"],
"Current Title & Company": candidate['Current Title & Company'],
"Key Highlights": candidate["Key Highlights"],
"Location": candidate["Location (from most recent experience)"],
"Experience": str(candidate["Experience"]),
"Tech Stack": candidate_stack
})
return matched
def setup_llm():
"""Set up the LangChain LLM with structured output"""
# Create LLM instance
llm = ChatOpenAI(
model="gpt-4o-mini",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
)
# Create structured output
sum_llm = llm.with_structured_output(Shortlist)
# Create system prompt
system = """You are an expert Recruitor, your task is to analyse the Candidate profile and determine if it matches with the job details and provide a score(out of 10) indicating how compatible the
the profile is according to job.
Try to ensure following points while estimating the candidate's fit score:
For education:
Tier1 - MIT, Stanford, CMU, UC Berkeley, Caltech, Harvard, IIT Bombay, IIT Delhi, Princeton, UIUC, University of Washington, Columbia, University of Chicago, Cornell, University of Michigan (Ann Arbor), UT Austin - Maximum points
Tier2 - UC Davis, Georgia Tech, Purdue, UMass Amherst,etc - Moderate points
Tier3 - Unknown or unranked institutions - Lower points or reject
Startup Experience Requirement:
Candidates must have worked as a direct employee at a VC-backed startup (Seed to series C/D)
preferred - Y Combinator, Sequoia,a16z,Accel,Founders Fund,LightSpeed,Greylock,Benchmark,Index Ventures,etc.
The fit score signifies based on following metrics:
1β5 - Poor Fit - Auto-reject
6β7 - Weak Fit - Auto-reject
8.0β8.7 - Moderate Fit - Auto-reject
8.8β10 - STRONG Fit - Include in results
"""
# Create query prompt
query_prompt = ChatPromptTemplate.from_messages([
("system", system),
("human", """
You are an expert Recruitor, your task is to determine if the user is a correct match for the given job or not.
For this you will be provided with the follwing inputs of job and candidates:
Job Details
Company: {Company}
Role: {Role}
About Company: {desc}
Locations: {Locations}
Tech Stack: {Tech_Stack}
Industry: {Industry}
Candidate Details:
Full Name: {Full_Name}
LinkedIn URL: {LinkedIn_URL}
Current Title & Company: {Current_Title_Company}
Years of Experience: {Years_of_Experience}
Degree & University: {Degree_University}
Key Tech Stack: {Key_Tech_Stack}
Key Highlights: {Key_Highlights}
Location (from most recent experience): {cand_Location}
Past_Experience: {Experience}
Answer in the structured manner as per the schema.
If any parameter is Unknown try not to include in the summary, only include those parameters which are known.
"""),
])
# Chain the prompt and LLM
cat_class = query_prompt | sum_llm
return cat_class
def call_llm(candidate_data, job_data, llm_chain):
"""Call the actual LLM to evaluate the candidate"""
try:
# Convert tech stacks to strings for the LLM payload
job_tech_stack = job_data.get("Tech_Stack", set())
candidate_tech_stack = candidate_data.get("Tech Stack", set())
if isinstance(job_tech_stack, set):
job_tech_stack = ", ".join(sorted(job_tech_stack))
if isinstance(candidate_tech_stack, set):
candidate_tech_stack = ", ".join(sorted(candidate_tech_stack))
# Prepare payload for LLM
payload = {
"Company": job_data.get("Company", ""),
"Role": job_data.get("Role", ""),
"desc": job_data.get("desc", ""),
"Locations": job_data.get("Locations", ""),
"Tech_Stack": job_tech_stack,
"Industry": job_data.get("Industry", ""),
"Full_Name": candidate_data.get("Name", ""),
"LinkedIn_URL": candidate_data.get("URL", ""),
"Current_Title_Company": candidate_data.get("Current Title & Company", ""),
"Years_of_Experience": candidate_data.get("Years of Experience", ""),
"Degree_University": candidate_data.get("Degree & Education", ""),
"Key_Tech_Stack": candidate_tech_stack,
"Key_Highlights": candidate_data.get("Key Highlights", ""),
"cand_Location": candidate_data.get("Location", ""),
"Experience": candidate_data.get("Experience", "")
}
# Call LLM
response = llm_chain.invoke(payload)
print(candidate_data.get("Experience", ""))
# Return response in expected format
return {
"candidate_name": response.candidate_name,
"candidate_url": response.candidate_url,
"candidate_summary": response.candidate_summary,
"candidate_location": response.candidate_location,
"fit_score": response.fit_score,
"justification": response.justification
}
except Exception as e:
st.error(f"Error calling LLM: {e}")
# Fallback to a default response
return {
"candidate_name": candidate_data.get("Name", "Unknown"),
"candidate_url": candidate_data.get("URL", ""),
"candidate_summary": "Error processing candidate profile",
"candidate_location": candidate_data.get("Location", "Unknown"),
"fit_score": 0.0,
"justification": f"Error in LLM processing: {str(e)}"
}
def process_candidates_for_job(job_row, candidates_df, llm_chain=None):
"""Process candidates for a specific job using the LLM"""
if llm_chain is None:
with st.spinner("Setting up LLM..."):
llm_chain = setup_llm()
selected_candidates = []
try:
# Get job-specific data
job_data = {
"Company": job_row["Company"],
"Role": job_row["Role"],
"desc": job_row.get("One liner", ""),
"Locations": job_row.get("Locations", ""),
"Tech_Stack": job_row["Tech Stack"],
"Industry": job_row.get("Industry", "")
}
# Find matching candidates for this job
with st.spinner("Finding matching candidates based on tech stack..."):
matching_candidates = get_matching_candidates(job_row["Tech Stack"], candidates_df)
if not matching_candidates:
st.warning("No candidates with matching tech stack found for this job.")
return []
st.success(f"Found {len(matching_candidates)} candidates with matching tech stack.")
# Create progress elements
candidates_progress = st.progress(0)
candidate_status = st.empty()
# Process each candidate
for i, candidate_data in enumerate(matching_candidates):
# Update progress
candidates_progress.progress((i + 1) / len(matching_candidates))
candidate_status.text(f"Evaluating candidate {i+1}/{len(matching_candidates)}: {candidate_data.get('Name', 'Unknown')}")
# Process the candidate with the LLM
response = call_llm(candidate_data, job_data, llm_chain)
response_dict = {
"Name": response["candidate_name"],
"LinkedIn": response["candidate_url"],
"summary": response["candidate_summary"],
"Location": response["candidate_location"],
"Fit Score": response["fit_score"],
"justification": response["justification"],
# Add back original candidate data for context
"Educational Background": candidate_data.get("Degree & Education", ""),
"Years of Experience": candidate_data.get("Years of Experience", ""),
"Current Title & Company": candidate_data.get("Current Title & Company", "")
}
# Add to selected candidates if score is high enough
if response["fit_score"] >= 8.8:
selected_candidates.append(response_dict)
st.markdown(response_dict)
else:
st.write(f"Rejected candidate: {response_dict['Name']} with score: {response['fit_score']}")
# Clear progress indicators
candidates_progress.empty()
candidate_status.empty()
# Show results
if selected_candidates:
st.success(f"β
Found {len(selected_candidates)} suitable candidates for this job!")
else:
st.info("No candidates met the minimum fit score threshold for this job.")
return selected_candidates
except Exception as e:
st.error(f"Error processing job: {e}")
return []
def main():
st.title("π¨βπ» Candidate Matching App")
# Initialize session state
if 'processed_jobs' not in st.session_state:
st.session_state.processed_jobs = {}
st.write("""
This app matches job listings with candidate profiles based on tech stack and other criteria.
Select a job to find matching candidates.
""")
# API Key input
with st.sidebar:
st.header("API Configuration")
api_key = st.text_input("Enter OpenAI API Key", type="password")
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
st.success("API Key set!")
else:
st.warning("Please enter OpenAI API Key to use LLM features")
# Show API key warning if not set
secret_content = os.getenv("GCP_SERVICE_ACCOUNT")
# secret_content = secret_content.replace("\n", "\\n")
secret_content = json.loads(secret_content)
SCOPES = ['https://www.googleapis.com/auth/spreadsheets']
creds = service_account.Credentials.from_service_account_info(secret_content, scopes=SCOPES)
gc = gspread.authorize(creds)
job_sheet = gc.open_by_key('1BZlvbtFyiQ9Pgr_lpepDJua1ZeVEqrCLjssNd6OiG9k')
candidates_sheet = gc.open_by_key('1u_9o5f0MPHFUSScjEcnA8Lojm4Y9m9LuWhvjYm6ytF4')
if not api_key:
st.warning("β οΈ You need to provide an OpenAI API key in the sidebar to use this app.")
if api_key:
try:
# Load data from Google Sheets
job_worksheet = job_sheet.worksheet('paraform_jobs_formatted')
job_data = job_worksheet.get_all_values()
candidate_worksheet = candidates_sheet.worksheet('transformed_candidates_updated')
candidate_data = candidate_worksheet.get_all_values()
# Convert to DataFrames
jobs_df = pd.DataFrame(job_data[1:], columns=job_data[0])
candidates_df = pd.DataFrame(candidate_data[1:], columns=candidate_data[0])
candidates_df = candidates_df.fillna("Unknown")
# Display data preview
with st.expander("Preview uploaded data"):
st.subheader("Jobs Data Preview")
st.dataframe(jobs_df.head(3))
st.subheader("Candidates Data Preview")
st.dataframe(candidates_df.head(3))
# Map column names if needed
column_mapping = {
"Full Name": "Full Name",
"LinkedIn URL": "LinkedIn URL",
"Current Title & Company": "Current Title & Company",
"Years of Experience": "Years of Experience",
"Degree & University": "Degree & University",
"Key Tech Stack": "Key Tech Stack",
"Key Highlights": "Key Highlights",
"Location (from most recent experience)": "Location (from most recent experience)"
}
# Rename columns if they don't match expected
candidates_df = candidates_df.rename(columns={
col: mapping for col, mapping in column_mapping.items()
if col in candidates_df.columns and col != mapping
})
# Now, instead of processing all jobs upfront, we'll display job selection
# and only process the selected job when the user chooses it
display_job_selection(jobs_df, candidates_df)
except Exception as e:
st.error(f"Error processing files: {e}")
st.divider()
def display_job_selection(jobs_df, candidates_df):
# Store the LLM chain as a session state to avoid recreating it
if 'llm_chain' not in st.session_state:
st.session_state.llm_chain = None
st.subheader("Select a job to view potential matches")
# Create job options - but don't compute matches yet
job_options = []
for i, row in jobs_df.iterrows():
job_options.append(f"{row['Role']} at {row['Company']}")
if job_options:
selected_job_index = st.selectbox("Jobs:",
range(len(job_options)),
format_func=lambda x: job_options[x])
# Display job details
job_row = jobs_df.iloc[selected_job_index]
# Parse tech stack for display
job_row_stack = parse_tech_stack(job_row["Tech Stack"])
col1, col2 = st.columns([2, 1])
with col1:
st.subheader(f"Job Details: {job_row['Role']}")
job_details = {
"Company": job_row["Company"],
"Role": job_row["Role"],
"Description": job_row.get("One liner", "N/A"),
"Locations": job_row.get("Locations", "N/A"),
"Industry": job_row.get("Industry", "N/A"),
"Tech Stack": display_tech_stack(job_row_stack)
}
for key, value in job_details.items():
st.markdown(f"**{key}:** {value}")
# Create a key for this job in session state
job_key = f"job_{selected_job_index}_processed"
if job_key not in st.session_state:
st.session_state[job_key] = False
# Add a process button for this job
if not st.session_state[job_key]:
if st.button(f"Find Matching Candidates for this Job"):
if "OPENAI_API_KEY" not in os.environ or not os.environ["OPENAI_API_KEY"]:
st.error("Please enter your OpenAI API key in the sidebar before processing")
else:
# Process candidates for this job (only when requested)
selected_candidates = process_candidates_for_job(
job_row,
candidates_df,
st.session_state.llm_chain
)
# Store the results and set as processed
if 'Selected_Candidates' not in st.session_state:
st.session_state.Selected_Candidates = {}
st.session_state.Selected_Candidates[selected_job_index] = selected_candidates
st.session_state[job_key] = True
# Store the LLM chain for reuse
if st.session_state.llm_chain is None:
st.session_state.llm_chain = setup_llm()
# Force refresh
st.rerun()
# Display selected candidates if already processed
if st.session_state[job_key] and 'Selected_Candidates' in st.session_state:
selected_candidates = st.session_state.Selected_Candidates.get(selected_job_index, [])
# Display selected candidates
st.subheader("Selected Candidates")
if len(selected_candidates) > 0:
for i, candidate in enumerate(selected_candidates):
with st.expander(f"{i+1}. {candidate['Name']} (Score: {candidate['Fit Score']})"):
col1, col2 = st.columns([3, 1])
with col1:
st.markdown(f"**Summary:** {candidate['summary']}")
st.markdown(f"**Current:** {candidate['Current Title & Company']}")
st.markdown(f"**Education:** {candidate['Educational Background']}")
st.markdown(f"**Experience:** {candidate['Years of Experience']}")
st.markdown(f"**Location:** {candidate['Location']}")
st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**")
with col2:
st.markdown(f"**Fit Score:** {candidate['Fit Score']}")
st.markdown("**Justification:**")
st.info(candidate['justification'])
else:
st.info("No candidates met the minimum score threshold (8.8) for this job.")
# We don't show tech-matched candidates here since they are generated
# during the LLM matching process now
# Add a reset button to start over
if st.button("Reset and Process Again"):
st.session_state[job_key] = False
st.rerun()
if __name__ == "__main__":
main() |