lightweight-job / src /app_job_copy_1.py
jyotidabass91's picture
Update src/app_job_copy_1.py
fd5e378 verified
raw
history blame
30 kB
import streamlit as st
import pandas as pd
import json
import os
from pydantic import BaseModel, Field
from typing import List, Set, Dict, Any, Optional # Already have these, but commented for brevity if not all used
import time # Added for potential small delays if needed
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage # Not directly used in provided snippet
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser # Not directly used in provided snippet
from langchain_core.prompts import PromptTemplate # Not directly used in provided snippet
import gspread
import tempfile
import time
from google.oauth2 import service_account
import tiktoken
st.set_page_config(
page_title="Candidate Matching App",
page_icon="πŸ‘¨β€πŸ’»πŸŽ―",
layout="wide"
)
os.environ["STREAMLIT_HOME"] = tempfile.gettempdir()
os.environ["STREAMLIT_DISABLE_TELEMETRY"] = "1"
# Define pydantic model for structured output
class Shortlist(BaseModel):
fit_score: float = Field(description="A score between 0 and 10 indicating how closely the candidate profile matches the job requirements upto 3 decimal points.")
candidate_name: str = Field(description="The name of the candidate.")
candidate_url: str = Field(description="The URL of the candidate's LinkedIn profile.")
candidate_summary: str = Field(description="A brief summary of the candidate's skills and experience along with its educational background.")
candidate_location: str = Field(description="The location of the candidate.")
justification: str = Field(description="Justification for the shortlisted candidate with the fit score")
# Function to calculate tokens
def calculate_tokens(text, model="gpt-4o-mini"):
try:
if "gpt-4" in model:
encoding = tiktoken.encoding_for_model("gpt-4o-mini")
elif "gpt-3.5" in model:
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
else:
encoding = tiktoken.get_encoding("cl100k_base")
return len(encoding.encode(text))
except Exception as e:
return len(text) // 4
# Function to display token usage
def display_token_usage():
if 'total_input_tokens' not in st.session_state:
st.session_state.total_input_tokens = 0
if 'total_output_tokens' not in st.session_state:
st.session_state.total_output_tokens = 0
total_input = st.session_state.total_input_tokens
total_output = st.session_state.total_output_tokens
total_tokens = total_input + total_output
model_to_check = st.session_state.get('model_name', "gpt-4o-mini") # Use a default if not set
if model_to_check == "gpt-4o-mini":
input_cost_per_1k = 0.00015 # Adjusted to example rates ($0.15 / 1M tokens)
output_cost_per_1k = 0.0006 # Adjusted to example rates ($0.60 / 1M tokens)
elif "gpt-4" in model_to_check: # Fallback for other gpt-4
input_cost_per_1k = 0.005
output_cost_per_1k = 0.015 # General gpt-4 pricing can vary
else: # Assume gpt-3.5-turbo pricing
input_cost_per_1k = 0.0005 # $0.0005 per 1K input tokens
output_cost_per_1k = 0.0015 # $0.0015 per 1K output tokens
estimated_cost = (total_input / 1000 * input_cost_per_1k) + (total_output / 1000 * output_cost_per_1k)
st.subheader("πŸ“Š Token Usage Statistics (for last processed job)")
col1, col2, col3 = st.columns(3)
with col1: st.metric("Input Tokens", f"{total_input:,}")
with col2: st.metric("Output Tokens", f"{total_output:,}")
with col3: st.metric("Total Tokens", f"{total_tokens:,}")
st.markdown(f"**Estimated Cost:** ${estimated_cost:.4f}")
return total_tokens
# Function to parse and normalize tech stacks
def parse_tech_stack(stack):
if pd.isna(stack) or stack == "" or stack is None: return set()
if isinstance(stack, set): return stack
try:
if isinstance(stack, str) and stack.startswith("{") and stack.endswith("}"):
items = stack.strip("{}").split(",")
return set(item.strip().strip("'\"") for item in items if item.strip())
return set(map(lambda x: x.strip().lower(), str(stack).split(',')))
except Exception as e:
st.error(f"Error parsing tech stack: {e}")
return set()
def display_tech_stack(stack_set):
return ", ".join(sorted(list(stack_set))) if isinstance(stack_set, set) else str(stack_set)
def get_matching_candidates(job_stack, candidates_df):
matched = []
job_stack_set = parse_tech_stack(job_stack)
for _, candidate in candidates_df.iterrows():
candidate_stack = parse_tech_stack(candidate['Key Tech Stack'])
common = job_stack_set & candidate_stack
if len(common) >= 2: # Original condition
matched.append({
"Name": candidate["Full Name"], "URL": candidate["LinkedIn URL"],
"Degree & Education": candidate["Degree & University"],
"Years of Experience": candidate["Years of Experience"],
"Current Title & Company": candidate['Current Title & Company'],
"Key Highlights": candidate["Key Highlights"],
"Location": candidate["Location (from most recent experience)"],
"Experience": str(candidate["Experience"]), "Tech Stack": candidate_stack
})
return matched
def setup_llm():
"""Set up the LangChain LLM with structured output"""
# Define the model to use
model_name = "gpt-4o-mini"
# Store model name in session state for token calculation
if 'model_name' not in st.session_state:
st.session_state.model_name = model_name
# Create LLM instance
llm = ChatOpenAI(
model=model_name,
temperature=0.3,
max_tokens=None,
timeout=None,
max_retries=2,
)
# Create structured output
sum_llm = llm.with_structured_output(Shortlist)
# Create system prompt
system = """You are an expert Tech Recruiter. For each candidate–job pair, follow these steps and show your chain of thought before giving a final Fit Score (0–10):
1. LOCATION CHECK (Hard Disqualification)
- If candidate’s location lies outside the job’s required location, immediately reject (Score 1–5) with reasoning β€œLocation mismatch.”
2. HARD DISQUALIFICATIONS (Auto-reject, Score 1–5)
- No VC-backed startup experience (Seed–Series C/D)
- Only Big Tech or corporate labs, with no startup follow-on
- < 3 years post-graduate SWE experience
- More than one role < 2 years (unless due to M&A or shutdown)
- Career centered on enterprise/consulting firms (e.g., Infosys, Wipro, Cognizant, Tata, Capgemini, Dell, Cisco)
- Visa dependency (H1B/OPT/TN) unless explicitly allowed
3. EDUCATION & STARTUP EXPERIENCE SCORING
- **Tier 1 (Max points):** MIT, Stanford, CMU, UC Berkeley, Caltech, Harvard, IIT Bombay, IIT Delhi, Princeton, UIUC, UW, Columbia, UChicago, Cornell, UM-Ann Arbor, UT Austin, Waterloo, U Toronto
- **Tier 2 (Moderate points):** UC Davis, Georgia Tech, Purdue, UMass Amherst, etc.
- **Tier 3 (Low points):** Other or unranked institutions
- Assume CS degree for all; use university field to assign tier
- Validate startup’s funding stage via Crunchbase/Pitchbook; preferred investors include YC, Sequoia, a16z, Accel, Founders Fund, Lightspeed, Greylock, Benchmark, Index Ventures
4. WEIGHTED FIT SCORE COMPONENTS (Qualified candidates only)
- Engineering & Problem Solving: 20%
- Product Experience (built systems end-to-end): 20%
- Startup Experience (time at VC-backed roles): 20%
- Tech Stack Alignment: 15%
- Tenure & Stability (β‰₯ 2 years per role): 15%
- Domain Relevance (industry match): 10% :
5. ADJACENT COMPANY MATCHING
- If startup funding can’t be verified, suggest similar-stage companies in the same market and justify
**Output:**
- **Chain of Thought:** bullet points for each step above
- **Final Fit Score:** X.X/10 and classification
- 1–5: Poor Fit (Auto-reject)
- 6–7: Weak Fit (Auto-reject)
- 8.0–8.7: Moderate Fit (Auto-reject)
- 8.8–10: Strong Fit (Include in results)
"""
# Create query prompt
query_prompt = ChatPromptTemplate.from_messages([
("system", system),
("human", """
You are an expert Recruitor. Your task is to determine if the candidate matches the given job.
Provide the score as a `float` rounded to exactly **three decimal places** (e.g., 8.943, 9.211, etc.).
Avoid rounding to whole or one-decimal numbers. Every candidate should have a **unique** fit score.
For this you will be provided with the follwing inputs of job and candidates:
Job Details
Company: {Company}
Role: {Role}
About Company: {desc}
Locations: {Locations}
Tech Stack: {Tech_Stack}
Industry: {Industry}
Candidate Details:
Full Name: {Full_Name}
LinkedIn URL: {LinkedIn_URL}
Current Title & Company: {Current_Title_Company}
Years of Experience: {Years_of_Experience}
Degree & University: {Degree_University}
Key Tech Stack: {Key_Tech_Stack}
Key Highlights: {Key_Highlights}
Location (from most recent experience): {cand_Location}
Past_Experience: {Experience}
Answer in the structured manner as per the schema.
If any parameter is Unknown try not to include in the summary, only include those parameters which are known.
The `fit_score` must be a float with **exactly three decimal digits** (e.g. 8.812, 9.006). Do not round to 1 or 2 decimals.
"""),
])
# Chain the prompt and LLM
cat_class = query_prompt | sum_llm
return cat_class
def call_llm(candidate_data, job_data, llm_chain):
try:
job_tech_stack = ", ".join(sorted(list(job_data.get("Tech_Stack", set())))) if isinstance(job_data.get("Tech_Stack"), set) else job_data.get("Tech_Stack", "")
candidate_tech_stack = ", ".join(sorted(list(candidate_data.get("Tech Stack", set())))) if isinstance(candidate_data.get("Tech Stack"), set) else candidate_data.get("Tech Stack", "")
payload = {
"Company": job_data.get("Company", ""), "Role": job_data.get("Role", ""),
"desc": job_data.get("desc", ""), "Locations": job_data.get("Locations", ""),
"Tech_Stack": job_tech_stack, "Industry": job_data.get("Industry", ""),
"Full_Name": candidate_data.get("Name", ""), "LinkedIn_URL": candidate_data.get("URL", ""),
"Current_Title_Company": candidate_data.get("Current Title & Company", ""),
"Years_of_Experience": candidate_data.get("Years of Experience", ""),
"Degree_University": candidate_data.get("Degree & Education", ""),
"Key_Tech_Stack": candidate_tech_stack, "Key_Highlights": candidate_data.get("Key Highlights", ""),
"cand_Location": candidate_data.get("Location", ""), "Experience": candidate_data.get("Experience", "")
}
payload_str = json.dumps(payload)
input_tokens = calculate_tokens(payload_str, st.session_state.model_name)
response = llm_chain.invoke(payload)
# print(candidate_data.get("Experience", "")) # Kept for your debugging if needed
response_str = f"candidate_name: {response.candidate_name} URL:{response.candidate_url} summ:{response.candidate_summary} loc: {response.candidate_location} just {response.justification} fit_score: {float(f'{response.fit_score:.3f}')}." # Truncated
output_tokens = calculate_tokens(response_str, st.session_state.model_name)
if 'total_input_tokens' not in st.session_state: st.session_state.total_input_tokens = 0
if 'total_output_tokens' not in st.session_state: st.session_state.total_output_tokens = 0
st.session_state.total_input_tokens += input_tokens
st.session_state.total_output_tokens += output_tokens
return {
"candidate_name": response.candidate_name, "candidate_url": response.candidate_url,
"candidate_summary": response.candidate_summary, "candidate_location": response.candidate_location,
"fit_score": response.fit_score, "justification": response.justification
}
except Exception as e:
st.error(f"Error calling LLM for {candidate_data.get('Name', 'Unknown')}: {e}")
return {
"candidate_name": candidate_data.get("Name", "Unknown"), "candidate_url": candidate_data.get("URL", ""),
"candidate_summary": "Error processing candidate profile", "candidate_location": candidate_data.get("Location", "Unknown"),
"fit_score": 0.0, "justification": f"Error in LLM processing: {str(e)}"
}
def process_candidates_for_job(job_row, candidates_df, llm_chain=None):
st.session_state.total_input_tokens = 0 # Reset for this job
st.session_state.total_output_tokens = 0
if llm_chain is None:
with st.spinner("Setting up LLM..."): llm_chain = setup_llm()
selected_candidates = []
job_data = {
"Company": job_row["Company"], "Role": job_row["Role"], "desc": job_row.get("One liner", ""),
"Locations": job_row.get("Locations", ""), "Tech_Stack": job_row["Tech Stack"], "Industry": job_row.get("Industry", "")
}
with st.spinner("Finding matching candidates based on tech stack..."):
matching_candidates = get_matching_candidates(job_row["Tech Stack"], candidates_df)
if not matching_candidates:
st.warning("No candidates with matching tech stack found for this job.")
return []
st.success(f"Found {len(matching_candidates)} candidates with matching tech stack. Evaluating with LLM...")
candidates_progress = st.progress(0)
candidate_status = st.empty() # For live updates
for i, candidate_data in enumerate(matching_candidates):
# *** MODIFICATION: Check for stop flag ***
if st.session_state.get('stop_processing_flag', False):
candidate_status.warning("Processing stopped by user.")
time.sleep(1) # Allow message to be seen
break
candidate_status.text(f"Evaluating candidate {i+1}/{len(matching_candidates)}: {candidate_data.get('Name', 'Unknown')}")
response = call_llm(candidate_data, job_data, llm_chain)
response_dict = {
"Name": response["candidate_name"], "LinkedIn": response["candidate_url"],
"summary": response["candidate_summary"], "Location": response["candidate_location"],
"Fit Score": float(f"{response['fit_score']:.3f}"), "justification": response["justification"],
"Educational Background": candidate_data.get("Degree & Education", ""),
"Years of Experience": candidate_data.get("Years of Experience", ""),
"Current Title & Company": candidate_data.get("Current Title & Company", "")
}
# *** MODIFICATION: Live output of candidate dicts - will disappear on rerun after processing ***
if response["fit_score"] >= 8.800:
selected_candidates.append(response_dict)
# This st.markdown will be visible during processing and cleared on the next full script rerun
# after this processing block finishes or is stopped.
st.markdown(
f"**Selected Candidate:** [{response_dict['Name']}]({response_dict['LinkedIn']}) "
f"(Score: {response_dict['Fit Score']:.3f}, Location: {response_dict['Location']})"
)
candidates_progress.progress((i + 1) / len(matching_candidates))
candidates_progress.empty()
candidate_status.empty()
if not st.session_state.get('stop_processing_flag', False): # Only show if not stopped
if selected_candidates:
st.success(f"βœ… LLM evaluation complete. Found {len(selected_candidates)} suitable candidates for this job!")
else:
st.info("LLM evaluation complete. No candidates met the minimum fit score threshold for this job.")
return selected_candidates
def main():
st.title("πŸ‘¨β€πŸ’» Candidate Matching App")
if 'processed_jobs' not in st.session_state: st.session_state.processed_jobs = {} # May not be used with new logic
if 'Selected_Candidates' not in st.session_state: st.session_state.Selected_Candidates = {}
if 'llm_chain' not in st.session_state: st.session_state.llm_chain = None # Initialize to None
# *** MODIFICATION: Initialize stop flag ***
if 'stop_processing_flag' not in st.session_state: st.session_state.stop_processing_flag = False
st.write("This app matches job listings with candidate profiles...")
with st.sidebar:
st.header("API Configuration")
api_key = st.text_input("Enter OpenAI API Key", type="password", key="api_key_input")
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
SERVICE_ACCOUNT_FILE = 'src/synapse-recruitment-e94255ca76fd.json' # Ensure this path is correct
SCOPES = ['https://www.googleapis.com/auth/spreadsheets']
creds = service_account.Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES)
# Initialize LLM chain once API key is set
if st.session_state.llm_chain is None:
with st.spinner("Setting up LLM..."):
st.session_state.llm_chain = setup_llm()
st.success("API Key set")
else:
st.warning("Please enter OpenAI API Key to use LLM features")
st.session_state.llm_chain = None # Clear chain if key removed
try:
gc = gspread.authorize(creds)
job_sheet = gc.open_by_key('1BZlvbtFyiQ9Pgr_lpepDJua1ZeVEqrCLjssNd6OiG9k')
candidates_sheet = gc.open_by_key('1u_9o5f0MPHFUSScjEcnA8Lojm4Y9m9LuWhvjYm6ytF4')
except Exception as e:
st.error(f"Failed to connect to Google Sheets. Please Ensure the API key is correct")
st.stop()
if not os.environ.get("OPENAI_API_KEY"):
st.warning("⚠️ You need to provide an OpenAI API key in the sidebar to use this app.")
st.stop()
if st.session_state.llm_chain is None and os.environ.get("OPENAI_API_KEY"):
with st.spinner("Setting up LLM..."):
st.session_state.llm_chain = setup_llm()
st.rerun() # Rerun to ensure LLM is ready for the main display logic
try:
job_worksheet = job_sheet.worksheet('paraform_jobs_formatted')
job_data = job_worksheet.get_all_values()
candidate_worksheet = candidates_sheet.worksheet('transformed_candidates_updated')
candidate_data = candidate_worksheet.get_all_values()
jobs_df = pd.DataFrame(job_data[1:], columns=job_data[0]).drop(["Link"], axis=1, errors='ignore')
jobs_df1 = jobs_df[["Company","Role","One liner","Locations","Tech Stack","Workplace","Industry","YOE"]]
jobs_df1 = jobs_df1.fillna("Unknown")
candidates_df = pd.DataFrame(candidate_data[1:], columns=candidate_data[0]).fillna("Unknown")
candidates_df.drop_duplicates(subset=['Full Name'], keep='first', inplace=True)
with st.expander("Preview uploaded data"):
st.subheader("Jobs Data Preview"); st.dataframe(jobs_df1.head(5))
# Column mapping (simplified, ensure your CSVs have these exact names or adjust)
# candidates_df = candidates_df.rename(columns={...}) # Add if needed
display_job_selection(jobs_df, candidates_df, job_sheet) # job_sheet is 'sh'
except Exception as e:
st.error(f"Error processing files or data: {e}")
st.divider()
def display_job_selection(jobs_df, candidates_df, sh):
st.subheader("Select a job to view potential matches")
job_options = [f"{row['Role']} at {row['Company']}" for _, row in jobs_df.iterrows()]
if 'last_selected_job_index' not in st.session_state:
st.session_state.last_selected_job_index = 0
selected_job_index = st.selectbox(
"Jobs:",
range(len(job_options)),
format_func=lambda x: job_options[x],
key="job_selectbox"
)
# Clear previous job state when a new job is selected
if selected_job_index != st.session_state.last_selected_job_index:
old_job_key = st.session_state.last_selected_job_index
job_processed_key = f"job_{old_job_key}_processed_successfully"
job_is_processing_key = f"job_{old_job_key}_is_currently_processing"
# Remove old job flags
for key in [job_processed_key, job_is_processing_key, 'stop_processing_flag', 'total_input_tokens', 'total_output_tokens']:
st.session_state.pop(key, None)
# Clear selected candidates for old job if they exist
if 'Selected_Candidates' in st.session_state:
st.session_state.Selected_Candidates.pop(old_job_key, None)
# Clear cache to avoid old data in UI
st.cache_data.clear()
# Update last selected job index
st.session_state.last_selected_job_index = selected_job_index
# Rerun to refresh UI and prevent stale data
st.rerun()
# Ensure Selected_Candidates is initialized for the new job
if 'Selected_Candidates' not in st.session_state:
st.session_state.Selected_Candidates = {}
if selected_job_index not in st.session_state.Selected_Candidates:
st.session_state.Selected_Candidates[selected_job_index] = []
# Proceed with job details
job_row = jobs_df.iloc[selected_job_index]
job_row_stack = parse_tech_stack(job_row["Tech Stack"])
col_job_details_display, _ = st.columns([2, 1])
with col_job_details_display:
st.subheader(f"Job Details: {job_row['Role']}")
job_details_dict = {
"Company": job_row["Company"],
"Role": job_row["Role"],
"Description": job_row.get("One liner", "N/A"),
"Locations": job_row.get("Locations", "N/A"),
"Industry": job_row.get("Industry", "N/A"),
"Tech Stack": display_tech_stack(job_row_stack)
}
for key, value in job_details_dict.items():
st.markdown(f"**{key}:** {value}")
job_processed_key = f"job_{selected_job_index}_processed_successfully"
job_is_processing_key = f"job_{selected_job_index}_is_currently_processing"
st.session_state.setdefault(job_processed_key, False)
st.session_state.setdefault(job_is_processing_key, False)
sheet_name = f"{job_row['Role']} at {job_row['Company']}".strip()[:100]
worksheet_exists = False
existing_candidates_from_sheet = []
try:
cand_ws = sh.worksheet(sheet_name)
worksheet_exists = True
data = cand_ws.get_all_values()
if len(data) > 1:
existing_candidates_from_sheet = data
except Exception:
pass
if not st.session_state[job_processed_key] or existing_candidates_from_sheet:
col_find, col_stop = st.columns(2)
with col_find:
if st.button("Find Matching Candidates for this Job", key=f"find_btn_{selected_job_index}",
disabled=st.session_state[job_is_processing_key]):
if not os.environ.get("OPENAI_API_KEY") or st.session_state.llm_chain is None:
st.error("OpenAI API key not set or LLM not initialized.")
else:
st.session_state[job_is_processing_key] = True
st.session_state.stop_processing_flag = False
st.session_state.Selected_Candidates[selected_job_index] = []
st.rerun()
with col_stop:
if st.session_state[job_is_processing_key]:
if st.button("STOP Processing", key=f"stop_btn_{selected_job_index}"):
st.session_state.stop_processing_flag = True
st.cache_data.clear()
st.warning("Stop request sent. Processing will halt shortly.")
st.rerun()
if st.session_state[job_is_processing_key]:
with st.spinner(f"Processing candidates for {job_row['Role']} at {job_row['Company']}..."):
processed_list = process_candidates_for_job(job_row, candidates_df, st.session_state.llm_chain)
st.session_state[job_is_processing_key] = False
if not st.session_state.get('stop_processing_flag', False):
if processed_list:
processed_list.sort(key=lambda x: x.get("Fit Score", 0.0), reverse=True)
st.session_state.Selected_Candidates[selected_job_index] = processed_list
st.session_state[job_processed_key] = True
try:
target_ws = sh.worksheet(sheet_name) if worksheet_exists else sh.add_worksheet(
title=sheet_name, rows=max(100, len(processed_list)+10), cols=20)
headers = list(processed_list[0].keys())
rows = [headers] + [[str(c.get(h, "")) for h in headers] for c in processed_list]
target_ws.clear()
target_ws.update('A1', rows)
st.success(f"Results saved to Google Sheet: '{sheet_name}'")
except Exception as e:
st.error(f"Error writing to Google Sheet '{sheet_name}': {e}")
else:
st.info("No suitable candidates found after processing.")
st.session_state.Selected_Candidates[selected_job_index] = []
st.session_state[job_processed_key] = True
else:
st.info("Processing was stopped by user.")
st.session_state[job_processed_key] = False
st.session_state.Selected_Candidates[selected_job_index] = []
st.session_state.pop('stop_processing_flag', None)
st.rerun()
should_display = False
final_candidates = []
if not st.session_state[job_is_processing_key]:
if st.session_state[job_processed_key]:
should_display = True
final_candidates = st.session_state.Selected_Candidates.get(selected_job_index, [])
elif existing_candidates_from_sheet:
should_display = True
headers = existing_candidates_from_sheet[0]
for row in existing_candidates_from_sheet[1:]:
cand = {headers[i]: row[i] if i < len(row) else None for i in range(len(headers))}
try: cand['Fit Score'] = float(cand.get('Fit Score', 0))
except: cand['Fit Score'] = 0.0
final_candidates.append(cand)
final_candidates.sort(key=lambda x: x.get('Fit Score', 0.0), reverse=True)
if should_display:
col_title, col_copyall = st.columns([3, 1])
with col_title:
st.subheader("Selected Candidates")
with col_copyall:
combined_text = ""
for cand in final_candidates:
combined_text += f"Name: {cand.get('Name','N/A')}\nLinkedIn URL: {cand.get('LinkedIn','N/A')}\n\n"
import json
html = f'''
<button id="copy-all-btn">πŸ“‹ Copy All</button>
<script>
const combinedText = {json.dumps(combined_text)};
document.getElementById("copy-all-btn").onclick = () => {{
navigator.clipboard.writeText(combinedText);
}};
</script>
'''
st.components.v1.html(html, height=60)
if st.session_state.get(job_processed_key) and (
st.session_state.get('total_input_tokens',0) > 0 or st.session_state.get('total_output_tokens',0) > 0):
display_token_usage()
for i, candidate in enumerate(final_candidates):
score = candidate.get('Fit Score', 0.0)
score_display = f"{score:.3f}" if isinstance(score, (int, float)) else score
exp_title = f"{i+1}. {candidate.get('Name','N/A')} (Score: {score_display})"
with st.expander(exp_title):
text_copy = f"Candidate: {candidate.get('Name','N/A')}\nLinkedIn: {candidate.get('LinkedIn','N/A')}\n"
btn = f"copy_btn_job{selected_job_index}_cand{i}"
js = f'''
<script>
function copyToClipboard_{btn}() {{ navigator.clipboard.writeText(`{text_copy}`); }}
</script>
<button onclick="copyToClipboard_{btn}()">πŸ“‹ Copy Details</button>
'''
cols = st.columns([0.82,0.18])
with cols[1]: st.components.v1.html(js, height=40)
with cols[0]:
st.markdown(f"**Summary:** {candidate.get('summary','N/A')}")
st.markdown(f"**Current:** {candidate.get('Current Title & Company','N/A')}")
st.markdown(f"**Education:** {candidate.get('Educational Background','N/A')}")
st.markdown(f"**Experience:** {candidate.get('Years of Experience','N/A')}")
st.markdown(f"**Location:** {candidate.get('Location','N/A')}")
if candidate.get('LinkedIn'):
st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**")
if candidate.get('justification'):
st.markdown("**Justification:**")
st.info(candidate['justification'])
if st.button("Reset and Process Again", key=f"reset_btn_{selected_job_index}"):
st.session_state[job_processed_key] = False
st.session_state.pop(job_is_processing_key, None)
st.session_state.Selected_Candidates.pop(selected_job_index, None)
st.cache_data.clear()
try: sh.worksheet(sheet_name).clear()
except: pass
st.rerun()
if __name__ == "__main__":
main()