Spaces:
Running
Running
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +468 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,470 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from pydantic import BaseModel, Field
|
6 |
+
from typing import List, Set, Dict, Any, Optional
|
7 |
+
import time
|
8 |
+
from langchain_openai import ChatOpenAI
|
9 |
+
from langchain_core.messages import HumanMessage
|
10 |
+
from langchain_core.prompts import ChatPromptTemplate
|
11 |
+
from langchain_core.output_parsers import StrOutputParser
|
12 |
+
from langchain_core.prompts import PromptTemplate
|
13 |
+
import gspread
|
14 |
+
from google.oauth2 import service_account
|
15 |
+
|
16 |
+
st.set_page_config(
|
17 |
+
page_title="Candidate Matching App",
|
18 |
+
page_icon="👨💻🎯",
|
19 |
+
layout="wide"
|
20 |
+
)
|
21 |
+
|
22 |
+
# Define pydantic model for structured output
|
23 |
+
class Shortlist(BaseModel):
|
24 |
+
fit_score: float = Field(description="A score between 0 and 10 indicating how closely the candidate profile matches the job requirements.")
|
25 |
+
candidate_name: str = Field(description="The name of the candidate.")
|
26 |
+
candidate_url: str = Field(description="The URL of the candidate's LinkedIn profile.")
|
27 |
+
candidate_summary: str = Field(description="A brief summary of the candidate's skills and experience along with its educational background.")
|
28 |
+
candidate_location: str = Field(description="The location of the candidate.")
|
29 |
+
justification: str = Field(description="Justification for the shortlisted candidate with the fit score")
|
30 |
+
|
31 |
+
# Function to parse and normalize tech stacks
|
32 |
+
def parse_tech_stack(stack):
|
33 |
+
if pd.isna(stack) or stack == "" or stack is None:
|
34 |
+
return set()
|
35 |
+
if isinstance(stack, set):
|
36 |
+
return stack
|
37 |
+
try:
|
38 |
+
# Handle potential string representation of sets
|
39 |
+
if isinstance(stack, str) and stack.startswith("{") and stack.endswith("}"):
|
40 |
+
# This could be a string representation of a set
|
41 |
+
items = stack.strip("{}").split(",")
|
42 |
+
return set(item.strip().strip("'\"") for item in items if item.strip())
|
43 |
+
return set(map(lambda x: x.strip().lower(), str(stack).split(',')))
|
44 |
+
except Exception as e:
|
45 |
+
st.error(f"Error parsing tech stack: {e}")
|
46 |
+
return set()
|
47 |
+
|
48 |
+
def display_tech_stack(stack_set):
|
49 |
+
if isinstance(stack_set, set):
|
50 |
+
return ", ".join(sorted(stack_set))
|
51 |
+
return str(stack_set)
|
52 |
+
|
53 |
+
def get_matching_candidates(job_stack, candidates_df):
|
54 |
+
"""Find candidates with matching tech stack for a specific job"""
|
55 |
+
matched = []
|
56 |
+
job_stack_set = parse_tech_stack(job_stack)
|
57 |
+
|
58 |
+
for _, candidate in candidates_df.iterrows():
|
59 |
+
candidate_stack = parse_tech_stack(candidate['Key Tech Stack'])
|
60 |
+
common = job_stack_set & candidate_stack
|
61 |
+
if len(common) >= 2:
|
62 |
+
matched.append({
|
63 |
+
"Name": candidate["Full Name"],
|
64 |
+
"URL": candidate["LinkedIn URL"],
|
65 |
+
"Degree & Education": candidate["Degree & University"],
|
66 |
+
"Years of Experience": candidate["Years of Experience"],
|
67 |
+
"Current Title & Company": candidate['Current Title & Company'],
|
68 |
+
"Key Highlights": candidate["Key Highlights"],
|
69 |
+
"Location": candidate["Location (from most recent experience)"],
|
70 |
+
"Experience": str(candidate["Experience"]),
|
71 |
+
"Tech Stack": candidate_stack
|
72 |
+
})
|
73 |
+
return matched
|
74 |
+
|
75 |
+
def setup_llm():
|
76 |
+
"""Set up the LangChain LLM with structured output"""
|
77 |
+
# Create LLM instance
|
78 |
+
llm = ChatOpenAI(
|
79 |
+
model="gpt-4o-mini",
|
80 |
+
temperature=0,
|
81 |
+
max_tokens=None,
|
82 |
+
timeout=None,
|
83 |
+
max_retries=2,
|
84 |
+
)
|
85 |
+
|
86 |
+
# Create structured output
|
87 |
+
sum_llm = llm.with_structured_output(Shortlist)
|
88 |
+
|
89 |
+
# Create system prompt
|
90 |
+
system = """You are an expert Recruitor, your task is to analyse the Candidate profile and determine if it matches with the job details and provide a score(out of 10) indicating how compatible the
|
91 |
+
the profile is according to job.
|
92 |
+
Try to ensure following points while estimating the candidate's fit score:
|
93 |
+
For education:
|
94 |
+
Tier1 - MIT, Stanford, CMU, UC Berkeley, Caltech, Harvard, IIT Bombay, IIT Delhi, Princeton, UIUC, University of Washington, Columbia, University of Chicago, Cornell, University of Michigan (Ann Arbor), UT Austin - Maximum points
|
95 |
+
Tier2 - UC Davis, Georgia Tech, Purdue, UMass Amherst,etc - Moderate points
|
96 |
+
Tier3 - Unknown or unranked institutions - Lower points or reject
|
97 |
+
Startup Experience Requirement:
|
98 |
+
Candidates must have worked as a direct employee at a VC-backed startup (Seed to series C/D)
|
99 |
+
preferred - Y Combinator, Sequoia,a16z,Accel,Founders Fund,LightSpeed,Greylock,Benchmark,Index Ventures,etc.
|
100 |
+
The fit score signifies based on following metrics:
|
101 |
+
1–5 - Poor Fit - Auto-reject
|
102 |
+
6–7 - Weak Fit - Auto-reject
|
103 |
+
8.0–8.7 - Moderate Fit - Auto-reject
|
104 |
+
8.8–10 - STRONG Fit - Include in results
|
105 |
+
"""
|
106 |
+
|
107 |
+
# Create query prompt
|
108 |
+
query_prompt = ChatPromptTemplate.from_messages([
|
109 |
+
("system", system),
|
110 |
+
("human", """
|
111 |
+
You are an expert Recruitor, your task is to determine if the user is a correct match for the given job or not.
|
112 |
+
For this you will be provided with the follwing inputs of job and candidates:
|
113 |
+
Job Details
|
114 |
+
Company: {Company}
|
115 |
+
Role: {Role}
|
116 |
+
About Company: {desc}
|
117 |
+
Locations: {Locations}
|
118 |
+
Tech Stack: {Tech_Stack}
|
119 |
+
Industry: {Industry}
|
120 |
+
|
121 |
+
Candidate Details:
|
122 |
+
Full Name: {Full_Name}
|
123 |
+
LinkedIn URL: {LinkedIn_URL}
|
124 |
+
Current Title & Company: {Current_Title_Company}
|
125 |
+
Years of Experience: {Years_of_Experience}
|
126 |
+
Degree & University: {Degree_University}
|
127 |
+
Key Tech Stack: {Key_Tech_Stack}
|
128 |
+
Key Highlights: {Key_Highlights}
|
129 |
+
Location (from most recent experience): {cand_Location}
|
130 |
+
Past_Experience: {Experience}
|
131 |
+
Answer in the structured manner as per the schema.
|
132 |
+
If any parameter is Unknown try not to include in the summary, only include those parameters which are known.
|
133 |
+
"""),
|
134 |
+
])
|
135 |
+
|
136 |
+
# Chain the prompt and LLM
|
137 |
+
cat_class = query_prompt | sum_llm
|
138 |
+
|
139 |
+
return cat_class
|
140 |
+
|
141 |
+
def call_llm(candidate_data, job_data, llm_chain):
|
142 |
+
"""Call the actual LLM to evaluate the candidate"""
|
143 |
+
try:
|
144 |
+
# Convert tech stacks to strings for the LLM payload
|
145 |
+
job_tech_stack = job_data.get("Tech_Stack", set())
|
146 |
+
candidate_tech_stack = candidate_data.get("Tech Stack", set())
|
147 |
+
|
148 |
+
if isinstance(job_tech_stack, set):
|
149 |
+
job_tech_stack = ", ".join(sorted(job_tech_stack))
|
150 |
+
|
151 |
+
if isinstance(candidate_tech_stack, set):
|
152 |
+
candidate_tech_stack = ", ".join(sorted(candidate_tech_stack))
|
153 |
+
|
154 |
+
# Prepare payload for LLM
|
155 |
+
payload = {
|
156 |
+
"Company": job_data.get("Company", ""),
|
157 |
+
"Role": job_data.get("Role", ""),
|
158 |
+
"desc": job_data.get("desc", ""),
|
159 |
+
"Locations": job_data.get("Locations", ""),
|
160 |
+
"Tech_Stack": job_tech_stack,
|
161 |
+
"Industry": job_data.get("Industry", ""),
|
162 |
+
|
163 |
+
"Full_Name": candidate_data.get("Name", ""),
|
164 |
+
"LinkedIn_URL": candidate_data.get("URL", ""),
|
165 |
+
"Current_Title_Company": candidate_data.get("Current Title & Company", ""),
|
166 |
+
"Years_of_Experience": candidate_data.get("Years of Experience", ""),
|
167 |
+
"Degree_University": candidate_data.get("Degree & Education", ""),
|
168 |
+
"Key_Tech_Stack": candidate_tech_stack,
|
169 |
+
"Key_Highlights": candidate_data.get("Key Highlights", ""),
|
170 |
+
"cand_Location": candidate_data.get("Location", ""),
|
171 |
+
"Experience": candidate_data.get("Experience", "")
|
172 |
+
}
|
173 |
+
|
174 |
+
# Call LLM
|
175 |
+
response = llm_chain.invoke(payload)
|
176 |
+
print(candidate_data.get("Experience", ""))
|
177 |
+
|
178 |
+
# Return response in expected format
|
179 |
+
return {
|
180 |
+
"candidate_name": response.candidate_name,
|
181 |
+
"candidate_url": response.candidate_url,
|
182 |
+
"candidate_summary": response.candidate_summary,
|
183 |
+
"candidate_location": response.candidate_location,
|
184 |
+
"fit_score": response.fit_score,
|
185 |
+
"justification": response.justification
|
186 |
+
}
|
187 |
+
except Exception as e:
|
188 |
+
st.error(f"Error calling LLM: {e}")
|
189 |
+
# Fallback to a default response
|
190 |
+
return {
|
191 |
+
"candidate_name": candidate_data.get("Name", "Unknown"),
|
192 |
+
"candidate_url": candidate_data.get("URL", ""),
|
193 |
+
"candidate_summary": "Error processing candidate profile",
|
194 |
+
"candidate_location": candidate_data.get("Location", "Unknown"),
|
195 |
+
"fit_score": 0.0,
|
196 |
+
"justification": f"Error in LLM processing: {str(e)}"
|
197 |
+
}
|
198 |
+
|
199 |
+
def process_candidates_for_job(job_row, candidates_df, llm_chain=None):
|
200 |
+
"""Process candidates for a specific job using the LLM"""
|
201 |
+
if llm_chain is None:
|
202 |
+
with st.spinner("Setting up LLM..."):
|
203 |
+
llm_chain = setup_llm()
|
204 |
+
|
205 |
+
selected_candidates = []
|
206 |
+
|
207 |
+
try:
|
208 |
+
# Get job-specific data
|
209 |
+
job_data = {
|
210 |
+
"Company": job_row["Company"],
|
211 |
+
"Role": job_row["Role"],
|
212 |
+
"desc": job_row.get("One liner", ""),
|
213 |
+
"Locations": job_row.get("Locations", ""),
|
214 |
+
"Tech_Stack": job_row["Tech Stack"],
|
215 |
+
"Industry": job_row.get("Industry", "")
|
216 |
+
}
|
217 |
+
|
218 |
+
# Find matching candidates for this job
|
219 |
+
with st.spinner("Finding matching candidates based on tech stack..."):
|
220 |
+
matching_candidates = get_matching_candidates(job_row["Tech Stack"], candidates_df)
|
221 |
+
|
222 |
+
if not matching_candidates:
|
223 |
+
st.warning("No candidates with matching tech stack found for this job.")
|
224 |
+
return []
|
225 |
+
|
226 |
+
st.success(f"Found {len(matching_candidates)} candidates with matching tech stack.")
|
227 |
+
|
228 |
+
# Create progress elements
|
229 |
+
candidates_progress = st.progress(0)
|
230 |
+
candidate_status = st.empty()
|
231 |
+
|
232 |
+
# Process each candidate
|
233 |
+
for i, candidate_data in enumerate(matching_candidates):
|
234 |
+
# Update progress
|
235 |
+
candidates_progress.progress((i + 1) / len(matching_candidates))
|
236 |
+
candidate_status.text(f"Evaluating candidate {i+1}/{len(matching_candidates)}: {candidate_data.get('Name', 'Unknown')}")
|
237 |
+
|
238 |
+
# Process the candidate with the LLM
|
239 |
+
response = call_llm(candidate_data, job_data, llm_chain)
|
240 |
+
|
241 |
+
response_dict = {
|
242 |
+
"Name": response["candidate_name"],
|
243 |
+
"LinkedIn": response["candidate_url"],
|
244 |
+
"summary": response["candidate_summary"],
|
245 |
+
"Location": response["candidate_location"],
|
246 |
+
"Fit Score": response["fit_score"],
|
247 |
+
"justification": response["justification"],
|
248 |
+
# Add back original candidate data for context
|
249 |
+
"Educational Background": candidate_data.get("Degree & Education", ""),
|
250 |
+
"Years of Experience": candidate_data.get("Years of Experience", ""),
|
251 |
+
"Current Title & Company": candidate_data.get("Current Title & Company", "")
|
252 |
+
}
|
253 |
+
|
254 |
+
# Add to selected candidates if score is high enough
|
255 |
+
if response["fit_score"] >= 8.8:
|
256 |
+
selected_candidates.append(response_dict)
|
257 |
+
st.markdown(response_dict)
|
258 |
+
else:
|
259 |
+
st.write(f"Rejected candidate: {response_dict['Name']} with score: {response['fit_score']}")
|
260 |
+
|
261 |
+
# Clear progress indicators
|
262 |
+
candidates_progress.empty()
|
263 |
+
candidate_status.empty()
|
264 |
+
|
265 |
+
# Show results
|
266 |
+
if selected_candidates:
|
267 |
+
st.success(f"✅ Found {len(selected_candidates)} suitable candidates for this job!")
|
268 |
+
else:
|
269 |
+
st.info("No candidates met the minimum fit score threshold for this job.")
|
270 |
+
|
271 |
+
return selected_candidates
|
272 |
+
|
273 |
+
except Exception as e:
|
274 |
+
st.error(f"Error processing job: {e}")
|
275 |
+
return []
|
276 |
+
|
277 |
+
def main():
|
278 |
+
st.title("👨💻 Candidate Matching App")
|
279 |
+
|
280 |
+
# Initialize session state
|
281 |
+
if 'processed_jobs' not in st.session_state:
|
282 |
+
st.session_state.processed_jobs = {}
|
283 |
+
|
284 |
+
st.write("""
|
285 |
+
This app matches job listings with candidate profiles based on tech stack and other criteria.
|
286 |
+
Select a job to find matching candidates.
|
287 |
+
""")
|
288 |
+
|
289 |
+
# API Key input
|
290 |
+
with st.sidebar:
|
291 |
+
st.header("API Configuration")
|
292 |
+
api_key = st.text_input("Enter OpenAI API Key", type="password")
|
293 |
+
if api_key:
|
294 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
295 |
+
st.success("API Key set!")
|
296 |
+
else:
|
297 |
+
st.warning("Please enter OpenAI API Key to use LLM features")
|
298 |
+
|
299 |
+
# Show API key warning if not set
|
300 |
+
secret_content = os.getenv("GCP_SERVICE_ACCOUNT")
|
301 |
+
secret_content = secret_content.replace("\n", "\\n")
|
302 |
+
secret_content = json.loads(secret_content)
|
303 |
+
SCOPES = ['https://www.googleapis.com/auth/spreadsheets']
|
304 |
+
creds = service_account.Credentials.from_service_account_info(secret_content, scopes=SCOPES)
|
305 |
+
gc = gspread.authorize(creds)
|
306 |
+
job_sheet = gc.open_by_key('1BZlvbtFyiQ9Pgr_lpepDJua1ZeVEqrCLjssNd6OiG9k')
|
307 |
+
candidates_sheet = gc.open_by_key('1u_9o5f0MPHFUSScjEcnA8Lojm4Y9m9LuWhvjYm6ytF4')
|
308 |
+
|
309 |
+
if not api_key:
|
310 |
+
st.warning("⚠️ You need to provide an OpenAI API key in the sidebar to use this app.")
|
311 |
+
|
312 |
+
if api_key:
|
313 |
+
try:
|
314 |
+
# Load data from Google Sheets
|
315 |
+
job_worksheet = job_sheet.worksheet('paraform_jobs_formatted')
|
316 |
+
job_data = job_worksheet.get_all_values()
|
317 |
+
candidate_worksheet = candidates_sheet.worksheet('transformed_candidates_updated')
|
318 |
+
candidate_data = candidate_worksheet.get_all_values()
|
319 |
+
|
320 |
+
# Convert to DataFrames
|
321 |
+
jobs_df = pd.DataFrame(job_data[1:], columns=job_data[0])
|
322 |
+
candidates_df = pd.DataFrame(candidate_data[1:], columns=candidate_data[0])
|
323 |
+
candidates_df = candidates_df.fillna("Unknown")
|
324 |
+
|
325 |
+
# Display data preview
|
326 |
+
with st.expander("Preview uploaded data"):
|
327 |
+
st.subheader("Jobs Data Preview")
|
328 |
+
st.dataframe(jobs_df.head(3))
|
329 |
+
|
330 |
+
st.subheader("Candidates Data Preview")
|
331 |
+
st.dataframe(candidates_df.head(3))
|
332 |
+
|
333 |
+
# Map column names if needed
|
334 |
+
column_mapping = {
|
335 |
+
"Full Name": "Full Name",
|
336 |
+
"LinkedIn URL": "LinkedIn URL",
|
337 |
+
"Current Title & Company": "Current Title & Company",
|
338 |
+
"Years of Experience": "Years of Experience",
|
339 |
+
"Degree & University": "Degree & University",
|
340 |
+
"Key Tech Stack": "Key Tech Stack",
|
341 |
+
"Key Highlights": "Key Highlights",
|
342 |
+
"Location (from most recent experience)": "Location (from most recent experience)"
|
343 |
+
}
|
344 |
+
|
345 |
+
# Rename columns if they don't match expected
|
346 |
+
candidates_df = candidates_df.rename(columns={
|
347 |
+
col: mapping for col, mapping in column_mapping.items()
|
348 |
+
if col in candidates_df.columns and col != mapping
|
349 |
+
})
|
350 |
+
|
351 |
+
# Now, instead of processing all jobs upfront, we'll display job selection
|
352 |
+
# and only process the selected job when the user chooses it
|
353 |
+
display_job_selection(jobs_df, candidates_df)
|
354 |
+
|
355 |
+
except Exception as e:
|
356 |
+
st.error(f"Error processing files: {e}")
|
357 |
+
|
358 |
+
st.divider()
|
359 |
+
|
360 |
+
|
361 |
+
def display_job_selection(jobs_df, candidates_df):
|
362 |
+
# Store the LLM chain as a session state to avoid recreating it
|
363 |
+
if 'llm_chain' not in st.session_state:
|
364 |
+
st.session_state.llm_chain = None
|
365 |
+
|
366 |
+
st.subheader("Select a job to view potential matches")
|
367 |
+
|
368 |
+
# Create job options - but don't compute matches yet
|
369 |
+
job_options = []
|
370 |
+
for i, row in jobs_df.iterrows():
|
371 |
+
job_options.append(f"{row['Role']} at {row['Company']}")
|
372 |
+
|
373 |
+
if job_options:
|
374 |
+
selected_job_index = st.selectbox("Jobs:",
|
375 |
+
range(len(job_options)),
|
376 |
+
format_func=lambda x: job_options[x])
|
377 |
+
|
378 |
+
# Display job details
|
379 |
+
job_row = jobs_df.iloc[selected_job_index]
|
380 |
+
|
381 |
+
# Parse tech stack for display
|
382 |
+
job_row_stack = parse_tech_stack(job_row["Tech Stack"])
|
383 |
+
|
384 |
+
col1, col2 = st.columns([2, 1])
|
385 |
+
|
386 |
+
with col1:
|
387 |
+
st.subheader(f"Job Details: {job_row['Role']}")
|
388 |
+
|
389 |
+
job_details = {
|
390 |
+
"Company": job_row["Company"],
|
391 |
+
"Role": job_row["Role"],
|
392 |
+
"Description": job_row.get("One liner", "N/A"),
|
393 |
+
"Locations": job_row.get("Locations", "N/A"),
|
394 |
+
"Industry": job_row.get("Industry", "N/A"),
|
395 |
+
"Tech Stack": display_tech_stack(job_row_stack)
|
396 |
+
}
|
397 |
+
|
398 |
+
for key, value in job_details.items():
|
399 |
+
st.markdown(f"**{key}:** {value}")
|
400 |
+
|
401 |
+
# Create a key for this job in session state
|
402 |
+
job_key = f"job_{selected_job_index}_processed"
|
403 |
+
|
404 |
+
if job_key not in st.session_state:
|
405 |
+
st.session_state[job_key] = False
|
406 |
+
|
407 |
+
# Add a process button for this job
|
408 |
+
if not st.session_state[job_key]:
|
409 |
+
if st.button(f"Find Matching Candidates for this Job"):
|
410 |
+
if "OPENAI_API_KEY" not in os.environ or not os.environ["OPENAI_API_KEY"]:
|
411 |
+
st.error("Please enter your OpenAI API key in the sidebar before processing")
|
412 |
+
else:
|
413 |
+
# Process candidates for this job (only when requested)
|
414 |
+
selected_candidates = process_candidates_for_job(
|
415 |
+
job_row,
|
416 |
+
candidates_df,
|
417 |
+
st.session_state.llm_chain
|
418 |
+
)
|
419 |
+
|
420 |
+
# Store the results and set as processed
|
421 |
+
if 'Selected_Candidates' not in st.session_state:
|
422 |
+
st.session_state.Selected_Candidates = {}
|
423 |
+
st.session_state.Selected_Candidates[selected_job_index] = selected_candidates
|
424 |
+
st.session_state[job_key] = True
|
425 |
+
|
426 |
+
# Store the LLM chain for reuse
|
427 |
+
if st.session_state.llm_chain is None:
|
428 |
+
st.session_state.llm_chain = setup_llm()
|
429 |
+
|
430 |
+
# Force refresh
|
431 |
+
st.rerun()
|
432 |
+
|
433 |
+
# Display selected candidates if already processed
|
434 |
+
if st.session_state[job_key] and 'Selected_Candidates' in st.session_state:
|
435 |
+
selected_candidates = st.session_state.Selected_Candidates.get(selected_job_index, [])
|
436 |
+
|
437 |
+
# Display selected candidates
|
438 |
+
st.subheader("Selected Candidates")
|
439 |
+
|
440 |
+
if len(selected_candidates) > 0:
|
441 |
+
for i, candidate in enumerate(selected_candidates):
|
442 |
+
with st.expander(f"{i+1}. {candidate['Name']} (Score: {candidate['Fit Score']})"):
|
443 |
+
col1, col2 = st.columns([3, 1])
|
444 |
+
|
445 |
+
with col1:
|
446 |
+
st.markdown(f"**Summary:** {candidate['summary']}")
|
447 |
+
st.markdown(f"**Current:** {candidate['Current Title & Company']}")
|
448 |
+
st.markdown(f"**Education:** {candidate['Educational Background']}")
|
449 |
+
st.markdown(f"**Experience:** {candidate['Years of Experience']}")
|
450 |
+
st.markdown(f"**Location:** {candidate['Location']}")
|
451 |
+
st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**")
|
452 |
+
|
453 |
+
with col2:
|
454 |
+
st.markdown(f"**Fit Score:** {candidate['Fit Score']}")
|
455 |
+
|
456 |
+
st.markdown("**Justification:**")
|
457 |
+
st.info(candidate['justification'])
|
458 |
+
else:
|
459 |
+
st.info("No candidates met the minimum score threshold (8.8) for this job.")
|
460 |
+
|
461 |
+
# We don't show tech-matched candidates here since they are generated
|
462 |
+
# during the LLM matching process now
|
463 |
+
|
464 |
+
# Add a reset button to start over
|
465 |
+
if st.button("Reset and Process Again"):
|
466 |
+
st.session_state[job_key] = False
|
467 |
+
st.rerun()
|
468 |
|
469 |
+
if __name__ == "__main__":
|
470 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|