Spaces:
Running
Running
Update src/app_job_copy_1.py
Browse files- src/app_job_copy_1.py +0 -476
src/app_job_copy_1.py
CHANGED
@@ -1,479 +1,3 @@
|
|
1 |
-
# import streamlit as st
|
2 |
-
# import pandas as pd
|
3 |
-
# import json
|
4 |
-
# import os
|
5 |
-
# from pydantic import BaseModel, Field
|
6 |
-
# from typing import List, Set, Dict, Any, Optional
|
7 |
-
# import time
|
8 |
-
# from langchain_openai import ChatOpenAI
|
9 |
-
# from langchain_core.messages import HumanMessage
|
10 |
-
# from langchain_core.prompts import ChatPromptTemplate
|
11 |
-
# from langchain_core.output_parsers import StrOutputParser
|
12 |
-
# from langchain_core.prompts import PromptTemplate
|
13 |
-
# import gspread
|
14 |
-
# from google.oauth2 import service_account
|
15 |
-
|
16 |
-
# st.set_page_config(
|
17 |
-
# page_title="Candidate Matching App",
|
18 |
-
# page_icon="π¨βπ»π―",
|
19 |
-
# layout="wide"
|
20 |
-
# )
|
21 |
-
|
22 |
-
# # Define pydantic model for structured output
|
23 |
-
# class Shortlist(BaseModel):
|
24 |
-
# fit_score: float = Field(description="A score between 0 and 10 indicating how closely the candidate profile matches the job requirements.")
|
25 |
-
# candidate_name: str = Field(description="The name of the candidate.")
|
26 |
-
# candidate_url: str = Field(description="The URL of the candidate's LinkedIn profile.")
|
27 |
-
# candidate_summary: str = Field(description="A brief summary of the candidate's skills and experience along with its educational background.")
|
28 |
-
# candidate_location: str = Field(description="The location of the candidate.")
|
29 |
-
# justification: str = Field(description="Justification for the shortlisted candidate with the fit score")
|
30 |
-
|
31 |
-
# # Function to parse and normalize tech stacks
|
32 |
-
# def parse_tech_stack(stack):
|
33 |
-
# if pd.isna(stack) or stack == "" or stack is None:
|
34 |
-
# return set()
|
35 |
-
# if isinstance(stack, set):
|
36 |
-
# return stack
|
37 |
-
# try:
|
38 |
-
# # Handle potential string representation of sets
|
39 |
-
# if isinstance(stack, str) and stack.startswith("{") and stack.endswith("}"):
|
40 |
-
# # This could be a string representation of a set
|
41 |
-
# items = stack.strip("{}").split(",")
|
42 |
-
# return set(item.strip().strip("'\"") for item in items if item.strip())
|
43 |
-
# return set(map(lambda x: x.strip().lower(), str(stack).split(',')))
|
44 |
-
# except Exception as e:
|
45 |
-
# st.error(f"Error parsing tech stack: {e}")
|
46 |
-
# return set()
|
47 |
-
|
48 |
-
# def display_tech_stack(stack_set):
|
49 |
-
# if isinstance(stack_set, set):
|
50 |
-
# return ", ".join(sorted(stack_set))
|
51 |
-
# return str(stack_set)
|
52 |
-
|
53 |
-
# def get_matching_candidates(job_stack, candidates_df):
|
54 |
-
# """Find candidates with matching tech stack for a specific job"""
|
55 |
-
# matched = []
|
56 |
-
# job_stack_set = parse_tech_stack(job_stack)
|
57 |
-
|
58 |
-
# for _, candidate in candidates_df.iterrows():
|
59 |
-
# candidate_stack = parse_tech_stack(candidate['Key Tech Stack'])
|
60 |
-
# common = job_stack_set & candidate_stack
|
61 |
-
# if len(common) >= 2:
|
62 |
-
# matched.append({
|
63 |
-
# "Name": candidate["Full Name"],
|
64 |
-
# "URL": candidate["LinkedIn URL"],
|
65 |
-
# "Degree & Education": candidate["Degree & University"],
|
66 |
-
# "Years of Experience": candidate["Years of Experience"],
|
67 |
-
# "Current Title & Company": candidate['Current Title & Company'],
|
68 |
-
# "Key Highlights": candidate["Key Highlights"],
|
69 |
-
# "Location": candidate["Location (from most recent experience)"],
|
70 |
-
# "Experience": str(candidate["Experience"]),
|
71 |
-
# "Tech Stack": candidate_stack
|
72 |
-
# })
|
73 |
-
# return matched
|
74 |
-
|
75 |
-
# def setup_llm():
|
76 |
-
# """Set up the LangChain LLM with structured output"""
|
77 |
-
# # Create LLM instance
|
78 |
-
# llm = ChatOpenAI(
|
79 |
-
# model="gpt-4o-mini",
|
80 |
-
# temperature=0,
|
81 |
-
# max_tokens=None,
|
82 |
-
# timeout=None,
|
83 |
-
# max_retries=2,
|
84 |
-
# )
|
85 |
-
|
86 |
-
# # Create structured output
|
87 |
-
# sum_llm = llm.with_structured_output(Shortlist)
|
88 |
-
|
89 |
-
# # Create system prompt
|
90 |
-
# system = """You are an expert Recruitor, your task is to analyse the Candidate profile and determine if it matches with the job details and provide a score(out of 10) indicating how compatible the
|
91 |
-
# the profile is according to job.
|
92 |
-
# Try to ensure following points while estimating the candidate's fit score:
|
93 |
-
# For education:
|
94 |
-
# Tier1 - MIT, Stanford, CMU, UC Berkeley, Caltech, Harvard, IIT Bombay, IIT Delhi, Princeton, UIUC, University of Washington, Columbia, University of Chicago, Cornell, University of Michigan (Ann Arbor), UT Austin - Maximum points
|
95 |
-
# Tier2 - UC Davis, Georgia Tech, Purdue, UMass Amherst,etc - Moderate points
|
96 |
-
# Tier3 - Unknown or unranked institutions - Lower points or reject
|
97 |
-
|
98 |
-
# Startup Experience Requirement:
|
99 |
-
# Candidates must have worked as a direct employee at a VC-backed startup (Seed to series C/D)
|
100 |
-
# preferred - Y Combinator, Sequoia,a16z,Accel,Founders Fund,LightSpeed,Greylock,Benchmark,Index Ventures,etc.
|
101 |
-
|
102 |
-
# The fit score signifies based on following metrics:
|
103 |
-
# 1β5 - Poor Fit - Auto-reject
|
104 |
-
# 6β7 - Weak Fit - Auto-reject
|
105 |
-
# 8.0β8.7 - Moderate Fit - Auto-reject
|
106 |
-
# 8.8β10 - STRONG Fit - Include in results
|
107 |
-
# """
|
108 |
-
|
109 |
-
# # Create query prompt
|
110 |
-
# query_prompt = ChatPromptTemplate.from_messages([
|
111 |
-
# ("system", system),
|
112 |
-
# ("human", """
|
113 |
-
# You are an expert Recruitor, your task is to determine if the user is a correct match for the given job or not.
|
114 |
-
# For this you will be provided with the follwing inputs of job and candidates:
|
115 |
-
# Job Details
|
116 |
-
# Company: {Company}
|
117 |
-
# Role: {Role}
|
118 |
-
# About Company: {desc}
|
119 |
-
# Locations: {Locations}
|
120 |
-
# Tech Stack: {Tech_Stack}
|
121 |
-
# Industry: {Industry}
|
122 |
-
|
123 |
-
|
124 |
-
# Candidate Details:
|
125 |
-
# Full Name: {Full_Name}
|
126 |
-
# LinkedIn URL: {LinkedIn_URL}
|
127 |
-
# Current Title & Company: {Current_Title_Company}
|
128 |
-
# Years of Experience: {Years_of_Experience}
|
129 |
-
# Degree & University: {Degree_University}
|
130 |
-
# Key Tech Stack: {Key_Tech_Stack}
|
131 |
-
# Key Highlights: {Key_Highlights}
|
132 |
-
# Location (from most recent experience): {cand_Location}
|
133 |
-
# Past_Experience: {Experience}
|
134 |
-
|
135 |
-
|
136 |
-
# Answer in the structured manner as per the schema.
|
137 |
-
# If any parameter is Unknown try not to include in the summary, only include those parameters which are known.
|
138 |
-
# """),
|
139 |
-
# ])
|
140 |
-
|
141 |
-
# # Chain the prompt and LLM
|
142 |
-
# cat_class = query_prompt | sum_llm
|
143 |
-
|
144 |
-
# return cat_class
|
145 |
-
|
146 |
-
# def call_llm(candidate_data, job_data, llm_chain):
|
147 |
-
# """Call the actual LLM to evaluate the candidate"""
|
148 |
-
# try:
|
149 |
-
# # Convert tech stacks to strings for the LLM payload
|
150 |
-
# job_tech_stack = job_data.get("Tech_Stack", set())
|
151 |
-
# candidate_tech_stack = candidate_data.get("Tech Stack", set())
|
152 |
-
|
153 |
-
# if isinstance(job_tech_stack, set):
|
154 |
-
# job_tech_stack = ", ".join(sorted(job_tech_stack))
|
155 |
-
|
156 |
-
# if isinstance(candidate_tech_stack, set):
|
157 |
-
# candidate_tech_stack = ", ".join(sorted(candidate_tech_stack))
|
158 |
-
|
159 |
-
# # Prepare payload for LLM
|
160 |
-
# payload = {
|
161 |
-
# "Company": job_data.get("Company", ""),
|
162 |
-
# "Role": job_data.get("Role", ""),
|
163 |
-
# "desc": job_data.get("desc", ""),
|
164 |
-
# "Locations": job_data.get("Locations", ""),
|
165 |
-
# "Tech_Stack": job_tech_stack,
|
166 |
-
# "Industry": job_data.get("Industry", ""),
|
167 |
-
|
168 |
-
# "Full_Name": candidate_data.get("Name", ""),
|
169 |
-
# "LinkedIn_URL": candidate_data.get("URL", ""),
|
170 |
-
# "Current_Title_Company": candidate_data.get("Current Title & Company", ""),
|
171 |
-
# "Years_of_Experience": candidate_data.get("Years of Experience", ""),
|
172 |
-
# "Degree_University": candidate_data.get("Degree & Education", ""),
|
173 |
-
# "Key_Tech_Stack": candidate_tech_stack,
|
174 |
-
# "Key_Highlights": candidate_data.get("Key Highlights", ""),
|
175 |
-
# "cand_Location": candidate_data.get("Location", ""),
|
176 |
-
# "Experience": candidate_data.get("Experience", "")
|
177 |
-
# }
|
178 |
-
|
179 |
-
# # Call LLM
|
180 |
-
# response = llm_chain.invoke(payload)
|
181 |
-
# print(candidate_data.get("Experience", ""))
|
182 |
-
|
183 |
-
# # Return response in expected format
|
184 |
-
# return {
|
185 |
-
# "candidate_name": response.candidate_name,
|
186 |
-
# "candidate_url": response.candidate_url,
|
187 |
-
# "candidate_summary": response.candidate_summary,
|
188 |
-
# "candidate_location": response.candidate_location,
|
189 |
-
# "fit_score": response.fit_score,
|
190 |
-
# "justification": response.justification
|
191 |
-
# }
|
192 |
-
# except Exception as e:
|
193 |
-
# st.error(f"Error calling LLM: {e}")
|
194 |
-
# # Fallback to a default response
|
195 |
-
# return {
|
196 |
-
# "candidate_name": candidate_data.get("Name", "Unknown"),
|
197 |
-
# "candidate_url": candidate_data.get("URL", ""),
|
198 |
-
# "candidate_summary": "Error processing candidate profile",
|
199 |
-
# "candidate_location": candidate_data.get("Location", "Unknown"),
|
200 |
-
# "fit_score": 0.0,
|
201 |
-
# "justification": f"Error in LLM processing: {str(e)}"
|
202 |
-
# }
|
203 |
-
|
204 |
-
# def process_candidates_for_job(job_row, candidates_df, llm_chain=None):
|
205 |
-
# """Process candidates for a specific job using the LLM"""
|
206 |
-
# if llm_chain is None:
|
207 |
-
# with st.spinner("Setting up LLM..."):
|
208 |
-
# llm_chain = setup_llm()
|
209 |
-
|
210 |
-
# selected_candidates = []
|
211 |
-
|
212 |
-
# try:
|
213 |
-
# # Get job-specific data
|
214 |
-
# job_data = {
|
215 |
-
# "Company": job_row["Company"],
|
216 |
-
# "Role": job_row["Role"],
|
217 |
-
# "desc": job_row.get("One liner", ""),
|
218 |
-
# "Locations": job_row.get("Locations", ""),
|
219 |
-
# "Tech_Stack": job_row["Tech Stack"],
|
220 |
-
# "Industry": job_row.get("Industry", "")
|
221 |
-
# }
|
222 |
-
|
223 |
-
# # Find matching candidates for this job
|
224 |
-
# with st.spinner("Finding matching candidates based on tech stack..."):
|
225 |
-
# matching_candidates = get_matching_candidates(job_row["Tech Stack"], candidates_df)
|
226 |
-
|
227 |
-
# if not matching_candidates:
|
228 |
-
# st.warning("No candidates with matching tech stack found for this job.")
|
229 |
-
# return []
|
230 |
-
|
231 |
-
# st.success(f"Found {len(matching_candidates)} candidates with matching tech stack.")
|
232 |
-
|
233 |
-
# # Create progress elements
|
234 |
-
# candidates_progress = st.progress(0)
|
235 |
-
# candidate_status = st.empty()
|
236 |
-
|
237 |
-
# # Process each candidate
|
238 |
-
# for i, candidate_data in enumerate(matching_candidates):
|
239 |
-
# # Update progress
|
240 |
-
# candidates_progress.progress((i + 1) / len(matching_candidates))
|
241 |
-
# candidate_status.text(f"Evaluating candidate {i+1}/{len(matching_candidates)}: {candidate_data.get('Name', 'Unknown')}")
|
242 |
-
|
243 |
-
# # Process the candidate with the LLM
|
244 |
-
# response = call_llm(candidate_data, job_data, llm_chain)
|
245 |
-
|
246 |
-
# response_dict = {
|
247 |
-
# "Name": response["candidate_name"],
|
248 |
-
# "LinkedIn": response["candidate_url"],
|
249 |
-
# "summary": response["candidate_summary"],
|
250 |
-
# "Location": response["candidate_location"],
|
251 |
-
# "Fit Score": response["fit_score"],
|
252 |
-
# "justification": response["justification"],
|
253 |
-
# # Add back original candidate data for context
|
254 |
-
# "Educational Background": candidate_data.get("Degree & Education", ""),
|
255 |
-
# "Years of Experience": candidate_data.get("Years of Experience", ""),
|
256 |
-
# "Current Title & Company": candidate_data.get("Current Title & Company", "")
|
257 |
-
# }
|
258 |
-
|
259 |
-
# # Add to selected candidates if score is high enough
|
260 |
-
# if response["fit_score"] >= 8.8:
|
261 |
-
# selected_candidates.append(response_dict)
|
262 |
-
# st.markdown(response_dict)
|
263 |
-
# else:
|
264 |
-
# st.write(f"Rejected candidate: {response_dict['Name']} with score: {response['fit_score']}")
|
265 |
-
|
266 |
-
# # Clear progress indicators
|
267 |
-
# candidates_progress.empty()
|
268 |
-
# candidate_status.empty()
|
269 |
-
|
270 |
-
# # Show results
|
271 |
-
# if selected_candidates:
|
272 |
-
# st.success(f"β
Found {len(selected_candidates)} suitable candidates for this job!")
|
273 |
-
# else:
|
274 |
-
# st.info("No candidates met the minimum fit score threshold for this job.")
|
275 |
-
|
276 |
-
# return selected_candidates
|
277 |
-
|
278 |
-
# except Exception as e:
|
279 |
-
# st.error(f"Error processing job: {e}")
|
280 |
-
# return []
|
281 |
-
|
282 |
-
# def main():
|
283 |
-
# st.title("π¨βπ» Candidate Matching App")
|
284 |
-
|
285 |
-
# # Initialize session state
|
286 |
-
# if 'processed_jobs' not in st.session_state:
|
287 |
-
# st.session_state.processed_jobs = {}
|
288 |
-
|
289 |
-
# st.write("""
|
290 |
-
# This app matches job listings with candidate profiles based on tech stack and other criteria.
|
291 |
-
# Select a job to find matching candidates.
|
292 |
-
# """)
|
293 |
-
|
294 |
-
# # API Key input
|
295 |
-
# with st.sidebar:
|
296 |
-
# st.header("API Configuration")
|
297 |
-
# api_key = st.text_input("Enter OpenAI API Key", type="password")
|
298 |
-
# if api_key:
|
299 |
-
# os.environ["OPENAI_API_KEY"] = api_key
|
300 |
-
# st.success("API Key set!")
|
301 |
-
# else:
|
302 |
-
# st.warning("Please enter OpenAI API Key to use LLM features")
|
303 |
-
|
304 |
-
# # Show API key warning if not set
|
305 |
-
# SERVICE_ACCOUNT_FILE = 'synapse-recruitment-e94255ca76fd.json'
|
306 |
-
# SCOPES = ['https://www.googleapis.com/auth/spreadsheets']
|
307 |
-
# creds = service_account.Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES)
|
308 |
-
# gc = gspread.authorize(creds)
|
309 |
-
# job_sheet = gc.open_by_key('1BZlvbtFyiQ9Pgr_lpepDJua1ZeVEqrCLjssNd6OiG9k')
|
310 |
-
# candidates_sheet = gc.open_by_key('1u_9o5f0MPHFUSScjEcnA8Lojm4Y9m9LuWhvjYm6ytF4')
|
311 |
-
|
312 |
-
# if not api_key:
|
313 |
-
# st.warning("β οΈ You need to provide an OpenAI API key in the sidebar to use this app.")
|
314 |
-
|
315 |
-
# if api_key:
|
316 |
-
# try:
|
317 |
-
# # Load data from Google Sheets
|
318 |
-
# job_worksheet = job_sheet.worksheet('paraform_jobs_formatted')
|
319 |
-
# job_data = job_worksheet.get_all_values()
|
320 |
-
# candidate_worksheet = candidates_sheet.worksheet('transformed_candidates_updated')
|
321 |
-
# candidate_data = candidate_worksheet.get_all_values()
|
322 |
-
|
323 |
-
# # Convert to DataFrames
|
324 |
-
# jobs_df = pd.DataFrame(job_data[1:], columns=job_data[0])
|
325 |
-
# candidates_df = pd.DataFrame(candidate_data[1:], columns=candidate_data[0])
|
326 |
-
# candidates_df = candidates_df.fillna("Unknown")
|
327 |
-
|
328 |
-
# # Display data preview
|
329 |
-
# with st.expander("Preview uploaded data"):
|
330 |
-
# st.subheader("Jobs Data Preview")
|
331 |
-
# st.dataframe(jobs_df.head(3))
|
332 |
-
|
333 |
-
# st.subheader("Candidates Data Preview")
|
334 |
-
# st.dataframe(candidates_df.head(3))
|
335 |
-
|
336 |
-
# # Map column names if needed
|
337 |
-
# column_mapping = {
|
338 |
-
# "Full Name": "Full Name",
|
339 |
-
# "LinkedIn URL": "LinkedIn URL",
|
340 |
-
# "Current Title & Company": "Current Title & Company",
|
341 |
-
# "Years of Experience": "Years of Experience",
|
342 |
-
# "Degree & University": "Degree & University",
|
343 |
-
# "Key Tech Stack": "Key Tech Stack",
|
344 |
-
# "Key Highlights": "Key Highlights",
|
345 |
-
# "Location (from most recent experience)": "Location (from most recent experience)"
|
346 |
-
# }
|
347 |
-
|
348 |
-
# # Rename columns if they don't match expected
|
349 |
-
# candidates_df = candidates_df.rename(columns={
|
350 |
-
# col: mapping for col, mapping in column_mapping.items()
|
351 |
-
# if col in candidates_df.columns and col != mapping
|
352 |
-
# })
|
353 |
-
|
354 |
-
# # Now, instead of processing all jobs upfront, we'll display job selection
|
355 |
-
# # and only process the selected job when the user chooses it
|
356 |
-
# display_job_selection(jobs_df, candidates_df)
|
357 |
-
|
358 |
-
# except Exception as e:
|
359 |
-
# st.error(f"Error processing files: {e}")
|
360 |
-
|
361 |
-
# st.divider()
|
362 |
-
|
363 |
-
|
364 |
-
# def display_job_selection(jobs_df, candidates_df):
|
365 |
-
# # Store the LLM chain as a session state to avoid recreating it
|
366 |
-
# if 'llm_chain' not in st.session_state:
|
367 |
-
# st.session_state.llm_chain = None
|
368 |
-
|
369 |
-
# st.subheader("Select a job to view potential matches")
|
370 |
-
|
371 |
-
# # Create job options - but don't compute matches yet
|
372 |
-
# job_options = []
|
373 |
-
# for i, row in jobs_df.iterrows():
|
374 |
-
# job_options.append(f"{row['Role']} at {row['Company']}")
|
375 |
-
|
376 |
-
# if job_options:
|
377 |
-
# selected_job_index = st.selectbox("Jobs:",
|
378 |
-
# range(len(job_options)),
|
379 |
-
# format_func=lambda x: job_options[x])
|
380 |
-
|
381 |
-
# # Display job details
|
382 |
-
# job_row = jobs_df.iloc[selected_job_index]
|
383 |
-
|
384 |
-
# # Parse tech stack for display
|
385 |
-
# job_row_stack = parse_tech_stack(job_row["Tech Stack"])
|
386 |
-
|
387 |
-
# col1, col2 = st.columns([2, 1])
|
388 |
-
|
389 |
-
# with col1:
|
390 |
-
# st.subheader(f"Job Details: {job_row['Role']}")
|
391 |
-
|
392 |
-
# job_details = {
|
393 |
-
# "Company": job_row["Company"],
|
394 |
-
# "Role": job_row["Role"],
|
395 |
-
# "Description": job_row.get("One liner", "N/A"),
|
396 |
-
# "Locations": job_row.get("Locations", "N/A"),
|
397 |
-
# "Industry": job_row.get("Industry", "N/A"),
|
398 |
-
# "Tech Stack": display_tech_stack(job_row_stack)
|
399 |
-
# }
|
400 |
-
|
401 |
-
# for key, value in job_details.items():
|
402 |
-
# st.markdown(f"**{key}:** {value}")
|
403 |
-
|
404 |
-
# # Create a key for this job in session state
|
405 |
-
# job_key = f"job_{selected_job_index}_processed"
|
406 |
-
|
407 |
-
# if job_key not in st.session_state:
|
408 |
-
# st.session_state[job_key] = False
|
409 |
-
|
410 |
-
# # Add a process button for this job
|
411 |
-
# if not st.session_state[job_key]:
|
412 |
-
# if st.button(f"Find Matching Candidates for this Job"):
|
413 |
-
# if "OPENAI_API_KEY" not in os.environ or not os.environ["OPENAI_API_KEY"]:
|
414 |
-
# st.error("Please enter your OpenAI API key in the sidebar before processing")
|
415 |
-
# else:
|
416 |
-
# # Process candidates for this job (only when requested)
|
417 |
-
# selected_candidates = process_candidates_for_job(
|
418 |
-
# job_row,
|
419 |
-
# candidates_df,
|
420 |
-
# st.session_state.llm_chain
|
421 |
-
# )
|
422 |
-
|
423 |
-
# # Store the results and set as processed
|
424 |
-
# if 'Selected_Candidates' not in st.session_state:
|
425 |
-
# st.session_state.Selected_Candidates = {}
|
426 |
-
# st.session_state.Selected_Candidates[selected_job_index] = selected_candidates
|
427 |
-
# st.session_state[job_key] = True
|
428 |
-
|
429 |
-
# # Store the LLM chain for reuse
|
430 |
-
# if st.session_state.llm_chain is None:
|
431 |
-
# st.session_state.llm_chain = setup_llm()
|
432 |
-
|
433 |
-
# # Force refresh
|
434 |
-
# st.rerun()
|
435 |
-
|
436 |
-
# # Display selected candidates if already processed
|
437 |
-
# if st.session_state[job_key] and 'Selected_Candidates' in st.session_state:
|
438 |
-
# selected_candidates = st.session_state.Selected_Candidates.get(selected_job_index, [])
|
439 |
-
|
440 |
-
# # Display selected candidates
|
441 |
-
# st.subheader("Selected Candidates")
|
442 |
-
|
443 |
-
# if len(selected_candidates) > 0:
|
444 |
-
# for i, candidate in enumerate(selected_candidates):
|
445 |
-
# with st.expander(f"{i+1}. {candidate['Name']} (Score: {candidate['Fit Score']})"):
|
446 |
-
# col1, col2 = st.columns([3, 1])
|
447 |
-
|
448 |
-
# with col1:
|
449 |
-
# st.markdown(f"**Summary:** {candidate['summary']}")
|
450 |
-
# st.markdown(f"**Current:** {candidate['Current Title & Company']}")
|
451 |
-
# st.markdown(f"**Education:** {candidate['Educational Background']}")
|
452 |
-
# st.markdown(f"**Experience:** {candidate['Years of Experience']}")
|
453 |
-
# st.markdown(f"**Location:** {candidate['Location']}")
|
454 |
-
# st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**")
|
455 |
-
|
456 |
-
# with col2:
|
457 |
-
# st.markdown(f"**Fit Score:** {candidate['Fit Score']}")
|
458 |
-
|
459 |
-
# st.markdown("**Justification:**")
|
460 |
-
# st.info(candidate['justification'])
|
461 |
-
# else:
|
462 |
-
# st.info("No candidates met the minimum score threshold (8.8) for this job.")
|
463 |
-
|
464 |
-
# # We don't show tech-matched candidates here since they are generated
|
465 |
-
# # during the LLM matching process now
|
466 |
-
|
467 |
-
# # Add a reset button to start over
|
468 |
-
# if st.button("Reset and Process Again"):
|
469 |
-
# st.session_state[job_key] = False
|
470 |
-
# st.rerun()
|
471 |
-
|
472 |
-
# if __name__ == "__main__":
|
473 |
-
# main()
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
import streamlit as st
|
478 |
import pandas as pd
|
479 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import json
|