Spaces:
Running
Running
Update src/app_job_copy_1.py
Browse files- src/app_job_copy_1.py +1054 -1054
src/app_job_copy_1.py
CHANGED
@@ -1,1055 +1,1055 @@
|
|
1 |
-
# import streamlit as st
|
2 |
-
# import pandas as pd
|
3 |
-
# import json
|
4 |
-
# import os
|
5 |
-
# from pydantic import BaseModel, Field
|
6 |
-
# from typing import List, Set, Dict, Any, Optional
|
7 |
-
# import time
|
8 |
-
# from langchain_openai import ChatOpenAI
|
9 |
-
# from langchain_core.messages import HumanMessage
|
10 |
-
# from langchain_core.prompts import ChatPromptTemplate
|
11 |
-
# from langchain_core.output_parsers import StrOutputParser
|
12 |
-
# from langchain_core.prompts import PromptTemplate
|
13 |
-
# import gspread
|
14 |
-
# from google.oauth2 import service_account
|
15 |
-
|
16 |
-
# st.set_page_config(
|
17 |
-
# page_title="Candidate Matching App",
|
18 |
-
# page_icon="👨💻🎯",
|
19 |
-
# layout="wide"
|
20 |
-
# )
|
21 |
-
|
22 |
-
# # Define pydantic model for structured output
|
23 |
-
# class Shortlist(BaseModel):
|
24 |
-
# fit_score: float = Field(description="A score between 0 and 10 indicating how closely the candidate profile matches the job requirements.")
|
25 |
-
# candidate_name: str = Field(description="The name of the candidate.")
|
26 |
-
# candidate_url: str = Field(description="The URL of the candidate's LinkedIn profile.")
|
27 |
-
# candidate_summary: str = Field(description="A brief summary of the candidate's skills and experience along with its educational background.")
|
28 |
-
# candidate_location: str = Field(description="The location of the candidate.")
|
29 |
-
# justification: str = Field(description="Justification for the shortlisted candidate with the fit score")
|
30 |
-
|
31 |
-
# # Function to parse and normalize tech stacks
|
32 |
-
# def parse_tech_stack(stack):
|
33 |
-
# if pd.isna(stack) or stack == "" or stack is None:
|
34 |
-
# return set()
|
35 |
-
# if isinstance(stack, set):
|
36 |
-
# return stack
|
37 |
-
# try:
|
38 |
-
# # Handle potential string representation of sets
|
39 |
-
# if isinstance(stack, str) and stack.startswith("{") and stack.endswith("}"):
|
40 |
-
# # This could be a string representation of a set
|
41 |
-
# items = stack.strip("{}").split(",")
|
42 |
-
# return set(item.strip().strip("'\"") for item in items if item.strip())
|
43 |
-
# return set(map(lambda x: x.strip().lower(), str(stack).split(',')))
|
44 |
-
# except Exception as e:
|
45 |
-
# st.error(f"Error parsing tech stack: {e}")
|
46 |
-
# return set()
|
47 |
-
|
48 |
-
# def display_tech_stack(stack_set):
|
49 |
-
# if isinstance(stack_set, set):
|
50 |
-
# return ", ".join(sorted(stack_set))
|
51 |
-
# return str(stack_set)
|
52 |
-
|
53 |
-
# def get_matching_candidates(job_stack, candidates_df):
|
54 |
-
# """Find candidates with matching tech stack for a specific job"""
|
55 |
-
# matched = []
|
56 |
-
# job_stack_set = parse_tech_stack(job_stack)
|
57 |
-
|
58 |
-
# for _, candidate in candidates_df.iterrows():
|
59 |
-
# candidate_stack = parse_tech_stack(candidate['Key Tech Stack'])
|
60 |
-
# common = job_stack_set & candidate_stack
|
61 |
-
# if len(common) >= 2:
|
62 |
-
# matched.append({
|
63 |
-
# "Name": candidate["Full Name"],
|
64 |
-
# "URL": candidate["LinkedIn URL"],
|
65 |
-
# "Degree & Education": candidate["Degree & University"],
|
66 |
-
# "Years of Experience": candidate["Years of Experience"],
|
67 |
-
# "Current Title & Company": candidate['Current Title & Company'],
|
68 |
-
# "Key Highlights": candidate["Key Highlights"],
|
69 |
-
# "Location": candidate["Location (from most recent experience)"],
|
70 |
-
# "Experience": str(candidate["Experience"]),
|
71 |
-
# "Tech Stack": candidate_stack
|
72 |
-
# })
|
73 |
-
# return matched
|
74 |
-
|
75 |
-
# def setup_llm():
|
76 |
-
# """Set up the LangChain LLM with structured output"""
|
77 |
-
# # Create LLM instance
|
78 |
-
# llm = ChatOpenAI(
|
79 |
-
# model="gpt-4o-mini",
|
80 |
-
# temperature=0,
|
81 |
-
# max_tokens=None,
|
82 |
-
# timeout=None,
|
83 |
-
# max_retries=2,
|
84 |
-
# )
|
85 |
-
|
86 |
-
# # Create structured output
|
87 |
-
# sum_llm = llm.with_structured_output(Shortlist)
|
88 |
-
|
89 |
-
# # Create system prompt
|
90 |
-
# system = """You are an expert Recruitor, your task is to analyse the Candidate profile and determine if it matches with the job details and provide a score(out of 10) indicating how compatible the
|
91 |
-
# the profile is according to job.
|
92 |
-
# Try to ensure following points while estimating the candidate's fit score:
|
93 |
-
# For education:
|
94 |
-
# Tier1 - MIT, Stanford, CMU, UC Berkeley, Caltech, Harvard, IIT Bombay, IIT Delhi, Princeton, UIUC, University of Washington, Columbia, University of Chicago, Cornell, University of Michigan (Ann Arbor), UT Austin - Maximum points
|
95 |
-
# Tier2 - UC Davis, Georgia Tech, Purdue, UMass Amherst,etc - Moderate points
|
96 |
-
# Tier3 - Unknown or unranked institutions - Lower points or reject
|
97 |
-
|
98 |
-
# Startup Experience Requirement:
|
99 |
-
# Candidates must have worked as a direct employee at a VC-backed startup (Seed to series C/D)
|
100 |
-
# preferred - Y Combinator, Sequoia,a16z,Accel,Founders Fund,LightSpeed,Greylock,Benchmark,Index Ventures,etc.
|
101 |
-
|
102 |
-
# The fit score signifies based on following metrics:
|
103 |
-
# 1–5 - Poor Fit - Auto-reject
|
104 |
-
# 6–7 - Weak Fit - Auto-reject
|
105 |
-
# 8.0–8.7 - Moderate Fit - Auto-reject
|
106 |
-
# 8.8
|
107 |
-
# """
|
108 |
-
|
109 |
-
# # Create query prompt
|
110 |
-
# query_prompt = ChatPromptTemplate.from_messages([
|
111 |
-
# ("system", system),
|
112 |
-
# ("human", """
|
113 |
-
# You are an expert Recruitor, your task is to determine if the user is a correct match for the given job or not.
|
114 |
-
# For this you will be provided with the follwing inputs of job and candidates:
|
115 |
-
# Job Details
|
116 |
-
# Company: {Company}
|
117 |
-
# Role: {Role}
|
118 |
-
# About Company: {desc}
|
119 |
-
# Locations: {Locations}
|
120 |
-
# Tech Stack: {Tech_Stack}
|
121 |
-
# Industry: {Industry}
|
122 |
-
|
123 |
-
|
124 |
-
# Candidate Details:
|
125 |
-
# Full Name: {Full_Name}
|
126 |
-
# LinkedIn URL: {LinkedIn_URL}
|
127 |
-
# Current Title & Company: {Current_Title_Company}
|
128 |
-
# Years of Experience: {Years_of_Experience}
|
129 |
-
# Degree & University: {Degree_University}
|
130 |
-
# Key Tech Stack: {Key_Tech_Stack}
|
131 |
-
# Key Highlights: {Key_Highlights}
|
132 |
-
# Location (from most recent experience): {cand_Location}
|
133 |
-
# Past_Experience: {Experience}
|
134 |
-
|
135 |
-
|
136 |
-
# Answer in the structured manner as per the schema.
|
137 |
-
# If any parameter is Unknown try not to include in the summary, only include those parameters which are known.
|
138 |
-
# """),
|
139 |
-
# ])
|
140 |
-
|
141 |
-
# # Chain the prompt and LLM
|
142 |
-
# cat_class = query_prompt | sum_llm
|
143 |
-
|
144 |
-
# return cat_class
|
145 |
-
|
146 |
-
# def call_llm(candidate_data, job_data, llm_chain):
|
147 |
-
# """Call the actual LLM to evaluate the candidate"""
|
148 |
-
# try:
|
149 |
-
# # Convert tech stacks to strings for the LLM payload
|
150 |
-
# job_tech_stack = job_data.get("Tech_Stack", set())
|
151 |
-
# candidate_tech_stack = candidate_data.get("Tech Stack", set())
|
152 |
-
|
153 |
-
# if isinstance(job_tech_stack, set):
|
154 |
-
# job_tech_stack = ", ".join(sorted(job_tech_stack))
|
155 |
-
|
156 |
-
# if isinstance(candidate_tech_stack, set):
|
157 |
-
# candidate_tech_stack = ", ".join(sorted(candidate_tech_stack))
|
158 |
-
|
159 |
-
# # Prepare payload for LLM
|
160 |
-
# payload = {
|
161 |
-
# "Company": job_data.get("Company", ""),
|
162 |
-
# "Role": job_data.get("Role", ""),
|
163 |
-
# "desc": job_data.get("desc", ""),
|
164 |
-
# "Locations": job_data.get("Locations", ""),
|
165 |
-
# "Tech_Stack": job_tech_stack,
|
166 |
-
# "Industry": job_data.get("Industry", ""),
|
167 |
-
|
168 |
-
# "Full_Name": candidate_data.get("Name", ""),
|
169 |
-
# "LinkedIn_URL": candidate_data.get("URL", ""),
|
170 |
-
# "Current_Title_Company": candidate_data.get("Current Title & Company", ""),
|
171 |
-
# "Years_of_Experience": candidate_data.get("Years of Experience", ""),
|
172 |
-
# "Degree_University": candidate_data.get("Degree & Education", ""),
|
173 |
-
# "Key_Tech_Stack": candidate_tech_stack,
|
174 |
-
# "Key_Highlights": candidate_data.get("Key Highlights", ""),
|
175 |
-
# "cand_Location": candidate_data.get("Location", ""),
|
176 |
-
# "Experience": candidate_data.get("Experience", "")
|
177 |
-
# }
|
178 |
-
|
179 |
-
# # Call LLM
|
180 |
-
# response = llm_chain.invoke(payload)
|
181 |
-
# print(candidate_data.get("Experience", ""))
|
182 |
-
|
183 |
-
# # Return response in expected format
|
184 |
-
# return {
|
185 |
-
# "candidate_name": response.candidate_name,
|
186 |
-
# "candidate_url": response.candidate_url,
|
187 |
-
# "candidate_summary": response.candidate_summary,
|
188 |
-
# "candidate_location": response.candidate_location,
|
189 |
-
# "fit_score": response.fit_score,
|
190 |
-
# "justification": response.justification
|
191 |
-
# }
|
192 |
-
# except Exception as e:
|
193 |
-
# st.error(f"Error calling LLM: {e}")
|
194 |
-
# # Fallback to a default response
|
195 |
-
# return {
|
196 |
-
# "candidate_name": candidate_data.get("Name", "Unknown"),
|
197 |
-
# "candidate_url": candidate_data.get("URL", ""),
|
198 |
-
# "candidate_summary": "Error processing candidate profile",
|
199 |
-
# "candidate_location": candidate_data.get("Location", "Unknown"),
|
200 |
-
# "fit_score": 0.0,
|
201 |
-
# "justification": f"Error in LLM processing: {str(e)}"
|
202 |
-
# }
|
203 |
-
|
204 |
-
# def process_candidates_for_job(job_row, candidates_df, llm_chain=None):
|
205 |
-
# """Process candidates for a specific job using the LLM"""
|
206 |
-
# if llm_chain is None:
|
207 |
-
# with st.spinner("Setting up LLM..."):
|
208 |
-
# llm_chain = setup_llm()
|
209 |
-
|
210 |
-
# selected_candidates = []
|
211 |
-
|
212 |
-
# try:
|
213 |
-
# # Get job-specific data
|
214 |
-
# job_data = {
|
215 |
-
# "Company": job_row["Company"],
|
216 |
-
# "Role": job_row["Role"],
|
217 |
-
# "desc": job_row.get("One liner", ""),
|
218 |
-
# "Locations": job_row.get("Locations", ""),
|
219 |
-
# "Tech_Stack": job_row["Tech Stack"],
|
220 |
-
# "Industry": job_row.get("Industry", "")
|
221 |
-
# }
|
222 |
-
|
223 |
-
# # Find matching candidates for this job
|
224 |
-
# with st.spinner("Finding matching candidates based on tech stack..."):
|
225 |
-
# matching_candidates = get_matching_candidates(job_row["Tech Stack"], candidates_df)
|
226 |
-
|
227 |
-
# if not matching_candidates:
|
228 |
-
# st.warning("No candidates with matching tech stack found for this job.")
|
229 |
-
# return []
|
230 |
-
|
231 |
-
# st.success(f"Found {len(matching_candidates)} candidates with matching tech stack.")
|
232 |
-
|
233 |
-
# # Create progress elements
|
234 |
-
# candidates_progress = st.progress(0)
|
235 |
-
# candidate_status = st.empty()
|
236 |
-
|
237 |
-
# # Process each candidate
|
238 |
-
# for i, candidate_data in enumerate(matching_candidates):
|
239 |
-
# # Update progress
|
240 |
-
# candidates_progress.progress((i + 1) / len(matching_candidates))
|
241 |
-
# candidate_status.text(f"Evaluating candidate {i+1}/{len(matching_candidates)}: {candidate_data.get('Name', 'Unknown')}")
|
242 |
-
|
243 |
-
# # Process the candidate with the LLM
|
244 |
-
# response = call_llm(candidate_data, job_data, llm_chain)
|
245 |
-
|
246 |
-
# response_dict = {
|
247 |
-
# "Name": response["candidate_name"],
|
248 |
-
# "LinkedIn": response["candidate_url"],
|
249 |
-
# "summary": response["candidate_summary"],
|
250 |
-
# "Location": response["candidate_location"],
|
251 |
-
# "Fit Score": response["fit_score"],
|
252 |
-
# "justification": response["justification"],
|
253 |
-
# # Add back original candidate data for context
|
254 |
-
# "Educational Background": candidate_data.get("Degree & Education", ""),
|
255 |
-
# "Years of Experience": candidate_data.get("Years of Experience", ""),
|
256 |
-
# "Current Title & Company": candidate_data.get("Current Title & Company", "")
|
257 |
-
# }
|
258 |
-
|
259 |
-
# # Add to selected candidates if score is high enough
|
260 |
-
# if response["fit_score"] >= 8.8:
|
261 |
-
# selected_candidates.append(response_dict)
|
262 |
-
# st.markdown(response_dict)
|
263 |
-
# else:
|
264 |
-
# st.write(f"Rejected candidate: {response_dict['Name']} with score: {response['fit_score']}")
|
265 |
-
|
266 |
-
# # Clear progress indicators
|
267 |
-
# candidates_progress.empty()
|
268 |
-
# candidate_status.empty()
|
269 |
-
|
270 |
-
# # Show results
|
271 |
-
# if selected_candidates:
|
272 |
-
# st.success(f"✅ Found {len(selected_candidates)} suitable candidates for this job!")
|
273 |
-
# else:
|
274 |
-
# st.info("No candidates met the minimum fit score threshold for this job.")
|
275 |
-
|
276 |
-
# return selected_candidates
|
277 |
-
|
278 |
-
# except Exception as e:
|
279 |
-
# st.error(f"Error processing job: {e}")
|
280 |
-
# return []
|
281 |
-
|
282 |
-
# def main():
|
283 |
-
# st.title("👨💻 Candidate Matching App")
|
284 |
-
|
285 |
-
# # Initialize session state
|
286 |
-
# if 'processed_jobs' not in st.session_state:
|
287 |
-
# st.session_state.processed_jobs = {}
|
288 |
-
|
289 |
-
# st.write("""
|
290 |
-
# This app matches job listings with candidate profiles based on tech stack and other criteria.
|
291 |
-
# Select a job to find matching candidates.
|
292 |
-
# """)
|
293 |
-
|
294 |
-
# # API Key input
|
295 |
-
# with st.sidebar:
|
296 |
-
# st.header("API Configuration")
|
297 |
-
# api_key = st.text_input("Enter OpenAI API Key", type="password")
|
298 |
-
# if api_key:
|
299 |
-
# os.environ["OPENAI_API_KEY"] = api_key
|
300 |
-
# st.success("API Key set!")
|
301 |
-
# else:
|
302 |
-
# st.warning("Please enter OpenAI API Key to use LLM features")
|
303 |
-
|
304 |
-
# # Show API key warning if not set
|
305 |
-
# SERVICE_ACCOUNT_FILE = 'synapse-recruitment-e94255ca76fd.json'
|
306 |
-
# SCOPES = ['https://www.googleapis.com/auth/spreadsheets']
|
307 |
-
# creds = service_account.Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES)
|
308 |
-
# gc = gspread.authorize(creds)
|
309 |
-
# job_sheet = gc.open_by_key('1BZlvbtFyiQ9Pgr_lpepDJua1ZeVEqrCLjssNd6OiG9k')
|
310 |
-
# candidates_sheet = gc.open_by_key('1u_9o5f0MPHFUSScjEcnA8Lojm4Y9m9LuWhvjYm6ytF4')
|
311 |
-
|
312 |
-
# if not api_key:
|
313 |
-
# st.warning("⚠️ You need to provide an OpenAI API key in the sidebar to use this app.")
|
314 |
-
|
315 |
-
# if api_key:
|
316 |
-
# try:
|
317 |
-
# # Load data from Google Sheets
|
318 |
-
# job_worksheet = job_sheet.worksheet('paraform_jobs_formatted')
|
319 |
-
# job_data = job_worksheet.get_all_values()
|
320 |
-
# candidate_worksheet = candidates_sheet.worksheet('transformed_candidates_updated')
|
321 |
-
# candidate_data = candidate_worksheet.get_all_values()
|
322 |
-
|
323 |
-
# # Convert to DataFrames
|
324 |
-
# jobs_df = pd.DataFrame(job_data[1:], columns=job_data[0])
|
325 |
-
# candidates_df = pd.DataFrame(candidate_data[1:], columns=candidate_data[0])
|
326 |
-
# candidates_df = candidates_df.fillna("Unknown")
|
327 |
-
|
328 |
-
# # Display data preview
|
329 |
-
# with st.expander("Preview uploaded data"):
|
330 |
-
# st.subheader("Jobs Data Preview")
|
331 |
-
# st.dataframe(jobs_df.head(3))
|
332 |
-
|
333 |
-
# st.subheader("Candidates Data Preview")
|
334 |
-
# st.dataframe(candidates_df.head(3))
|
335 |
-
|
336 |
-
# # Map column names if needed
|
337 |
-
# column_mapping = {
|
338 |
-
# "Full Name": "Full Name",
|
339 |
-
# "LinkedIn URL": "LinkedIn URL",
|
340 |
-
# "Current Title & Company": "Current Title & Company",
|
341 |
-
# "Years of Experience": "Years of Experience",
|
342 |
-
# "Degree & University": "Degree & University",
|
343 |
-
# "Key Tech Stack": "Key Tech Stack",
|
344 |
-
# "Key Highlights": "Key Highlights",
|
345 |
-
# "Location (from most recent experience)": "Location (from most recent experience)"
|
346 |
-
# }
|
347 |
-
|
348 |
-
# # Rename columns if they don't match expected
|
349 |
-
# candidates_df = candidates_df.rename(columns={
|
350 |
-
# col: mapping for col, mapping in column_mapping.items()
|
351 |
-
# if col in candidates_df.columns and col != mapping
|
352 |
-
# })
|
353 |
-
|
354 |
-
# # Now, instead of processing all jobs upfront, we'll display job selection
|
355 |
-
# # and only process the selected job when the user chooses it
|
356 |
-
# display_job_selection(jobs_df, candidates_df)
|
357 |
-
|
358 |
-
# except Exception as e:
|
359 |
-
# st.error(f"Error processing files: {e}")
|
360 |
-
|
361 |
-
# st.divider()
|
362 |
-
|
363 |
-
|
364 |
-
# def display_job_selection(jobs_df, candidates_df):
|
365 |
-
# # Store the LLM chain as a session state to avoid recreating it
|
366 |
-
# if 'llm_chain' not in st.session_state:
|
367 |
-
# st.session_state.llm_chain = None
|
368 |
-
|
369 |
-
# st.subheader("Select a job to view potential matches")
|
370 |
-
|
371 |
-
# # Create job options - but don't compute matches yet
|
372 |
-
# job_options = []
|
373 |
-
# for i, row in jobs_df.iterrows():
|
374 |
-
# job_options.append(f"{row['Role']} at {row['Company']}")
|
375 |
-
|
376 |
-
# if job_options:
|
377 |
-
# selected_job_index = st.selectbox("Jobs:",
|
378 |
-
# range(len(job_options)),
|
379 |
-
# format_func=lambda x: job_options[x])
|
380 |
-
|
381 |
-
# # Display job details
|
382 |
-
# job_row = jobs_df.iloc[selected_job_index]
|
383 |
-
|
384 |
-
# # Parse tech stack for display
|
385 |
-
# job_row_stack = parse_tech_stack(job_row["Tech Stack"])
|
386 |
-
|
387 |
-
# col1, col2 = st.columns([2, 1])
|
388 |
-
|
389 |
-
# with col1:
|
390 |
-
# st.subheader(f"Job Details: {job_row['Role']}")
|
391 |
-
|
392 |
-
# job_details = {
|
393 |
-
# "Company": job_row["Company"],
|
394 |
-
# "Role": job_row["Role"],
|
395 |
-
# "Description": job_row.get("One liner", "N/A"),
|
396 |
-
# "Locations": job_row.get("Locations", "N/A"),
|
397 |
-
# "Industry": job_row.get("Industry", "N/A"),
|
398 |
-
# "Tech Stack": display_tech_stack(job_row_stack)
|
399 |
-
# }
|
400 |
-
|
401 |
-
# for key, value in job_details.items():
|
402 |
-
# st.markdown(f"**{key}:** {value}")
|
403 |
-
|
404 |
-
# # Create a key for this job in session state
|
405 |
-
# job_key = f"job_{selected_job_index}_processed"
|
406 |
-
|
407 |
-
# if job_key not in st.session_state:
|
408 |
-
# st.session_state[job_key] = False
|
409 |
-
|
410 |
-
# # Add a process button for this job
|
411 |
-
# if not st.session_state[job_key]:
|
412 |
-
# if st.button(f"Find Matching Candidates for this Job"):
|
413 |
-
# if "OPENAI_API_KEY" not in os.environ or not os.environ["OPENAI_API_KEY"]:
|
414 |
-
# st.error("Please enter your OpenAI API key in the sidebar before processing")
|
415 |
-
# else:
|
416 |
-
# # Process candidates for this job (only when requested)
|
417 |
-
# selected_candidates = process_candidates_for_job(
|
418 |
-
# job_row,
|
419 |
-
# candidates_df,
|
420 |
-
# st.session_state.llm_chain
|
421 |
-
# )
|
422 |
-
|
423 |
-
# # Store the results and set as processed
|
424 |
-
# if 'Selected_Candidates' not in st.session_state:
|
425 |
-
# st.session_state.Selected_Candidates = {}
|
426 |
-
# st.session_state.Selected_Candidates[selected_job_index] = selected_candidates
|
427 |
-
# st.session_state[job_key] = True
|
428 |
-
|
429 |
-
# # Store the LLM chain for reuse
|
430 |
-
# if st.session_state.llm_chain is None:
|
431 |
-
# st.session_state.llm_chain = setup_llm()
|
432 |
-
|
433 |
-
# # Force refresh
|
434 |
-
# st.rerun()
|
435 |
-
|
436 |
-
# # Display selected candidates if already processed
|
437 |
-
# if st.session_state[job_key] and 'Selected_Candidates' in st.session_state:
|
438 |
-
# selected_candidates = st.session_state.Selected_Candidates.get(selected_job_index, [])
|
439 |
-
|
440 |
-
# # Display selected candidates
|
441 |
-
# st.subheader("Selected Candidates")
|
442 |
-
|
443 |
-
# if len(selected_candidates) > 0:
|
444 |
-
# for i, candidate in enumerate(selected_candidates):
|
445 |
-
# with st.expander(f"{i+1}. {candidate['Name']} (Score: {candidate['Fit Score']})"):
|
446 |
-
# col1, col2 = st.columns([3, 1])
|
447 |
-
|
448 |
-
# with col1:
|
449 |
-
# st.markdown(f"**Summary:** {candidate['summary']}")
|
450 |
-
# st.markdown(f"**Current:** {candidate['Current Title & Company']}")
|
451 |
-
# st.markdown(f"**Education:** {candidate['Educational Background']}")
|
452 |
-
# st.markdown(f"**Experience:** {candidate['Years of Experience']}")
|
453 |
-
# st.markdown(f"**Location:** {candidate['Location']}")
|
454 |
-
# st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**")
|
455 |
-
|
456 |
-
# with col2:
|
457 |
-
# st.markdown(f"**Fit Score:** {candidate['Fit Score']}")
|
458 |
-
|
459 |
-
# st.markdown("**Justification:**")
|
460 |
-
# st.info(candidate['justification'])
|
461 |
-
# else:
|
462 |
-
# st.info("No candidates met the minimum score threshold (8.8) for this job.")
|
463 |
-
|
464 |
-
# # We don't show tech-matched candidates here since they are generated
|
465 |
-
# # during the LLM matching process now
|
466 |
-
|
467 |
-
# # Add a reset button to start over
|
468 |
-
# if st.button("Reset and Process Again"):
|
469 |
-
# st.session_state[job_key] = False
|
470 |
-
# st.rerun()
|
471 |
-
|
472 |
-
# if __name__ == "__main__":
|
473 |
-
# main()
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
import streamlit as st
|
478 |
-
import pandas as pd
|
479 |
-
import json
|
480 |
-
import os
|
481 |
-
from pydantic import BaseModel, Field
|
482 |
-
from typing import List, Set, Dict, Any, Optional
|
483 |
-
import time
|
484 |
-
from langchain_openai import ChatOpenAI
|
485 |
-
from langchain_core.messages import HumanMessage
|
486 |
-
from langchain_core.prompts import ChatPromptTemplate
|
487 |
-
from langchain_core.output_parsers import StrOutputParser
|
488 |
-
from langchain_core.prompts import PromptTemplate
|
489 |
-
import gspread
|
490 |
-
from google.oauth2 import service_account
|
491 |
-
import tiktoken
|
492 |
-
|
493 |
-
st.set_page_config(
|
494 |
-
page_title="Candidate Matching App",
|
495 |
-
page_icon="👨💻🎯",
|
496 |
-
layout="wide"
|
497 |
-
)
|
498 |
-
|
499 |
-
# Define pydantic model for structured output
|
500 |
-
class Shortlist(BaseModel):
|
501 |
-
fit_score: float = Field(description="A score between 0 and 10 indicating how closely the candidate profile matches the job requirements.")
|
502 |
-
candidate_name: str = Field(description="The name of the candidate.")
|
503 |
-
candidate_url: str = Field(description="The URL of the candidate's LinkedIn profile.")
|
504 |
-
candidate_summary: str = Field(description="A brief summary of the candidate's skills and experience along with its educational background.")
|
505 |
-
candidate_location: str = Field(description="The location of the candidate.")
|
506 |
-
justification: str = Field(description="Justification for the shortlisted candidate with the fit score")
|
507 |
-
|
508 |
-
# Function to calculate tokens
|
509 |
-
def calculate_tokens(text, model="gpt-4o-mini"):
|
510 |
-
"""Calculate the number of tokens in a given text for a specific model"""
|
511 |
-
try:
|
512 |
-
# Get the encoding for the model
|
513 |
-
if "gpt-4" in model:
|
514 |
-
encoding = tiktoken.encoding_for_model("gpt-4o-mini")
|
515 |
-
elif "gpt-3.5" in model:
|
516 |
-
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
|
517 |
-
else:
|
518 |
-
encoding = tiktoken.get_encoding("cl100k_base") # Default for newer models
|
519 |
-
|
520 |
-
# Encode the text and return the token count
|
521 |
-
return len(encoding.encode(text))
|
522 |
-
except Exception as e:
|
523 |
-
# If there's an error, make a rough estimate (1 token ≈ 4 chars)
|
524 |
-
return len(text) // 4
|
525 |
-
|
526 |
-
# Function to display token usage
|
527 |
-
def display_token_usage():
|
528 |
-
"""Display token usage statistics"""
|
529 |
-
if 'total_input_tokens' not in st.session_state:
|
530 |
-
st.session_state.total_input_tokens = 0
|
531 |
-
if 'total_output_tokens' not in st.session_state:
|
532 |
-
st.session_state.total_output_tokens = 0
|
533 |
-
|
534 |
-
total_input = st.session_state.total_input_tokens
|
535 |
-
total_output = st.session_state.total_output_tokens
|
536 |
-
total_tokens = total_input + total_output
|
537 |
-
|
538 |
-
# Estimate cost based on model
|
539 |
-
if st.session_state.model_name == "gpt-4o-mini":
|
540 |
-
input_cost_per_1k = 0.0003 # $0.0003 per 1K input tokens
|
541 |
-
output_cost_per_1k = 0.0006 # $$0.0006 per 1K output tokens
|
542 |
-
elif "gpt-4" in st.session_state.model_name:
|
543 |
-
input_cost_per_1k = 0.005 # $0.30 per 1K input tokens
|
544 |
-
output_cost_per_1k = 0.60 # $0.60 per 1K output tokens
|
545 |
-
else: # Assume gpt-3.5-turbo pricing
|
546 |
-
input_cost_per_1k = 0.0015 # $0.0015 per 1K input tokens
|
547 |
-
output_cost_per_1k = 0.015 # $0.002 per 1K output tokens
|
548 |
-
|
549 |
-
estimated_cost = (total_input / 1000 * input_cost_per_1k) + (total_output / 1000 * output_cost_per_1k)
|
550 |
-
|
551 |
-
st.subheader("📊 Token Usage Statistics")
|
552 |
-
|
553 |
-
col1, col2, col3 = st.columns(3)
|
554 |
-
|
555 |
-
with col1:
|
556 |
-
st.metric("Input Tokens", f"{total_input:,}")
|
557 |
-
|
558 |
-
with col2:
|
559 |
-
st.metric("Output Tokens", f"{total_output:,}")
|
560 |
-
|
561 |
-
with col3:
|
562 |
-
st.metric("Total Tokens", f"{total_tokens:,}")
|
563 |
-
|
564 |
-
st.markdown(f"**Estimated Cost:** ${estimated_cost:.4f}")
|
565 |
-
|
566 |
-
return total_tokens
|
567 |
-
|
568 |
-
# Function to parse and normalize tech stacks
|
569 |
-
def parse_tech_stack(stack):
|
570 |
-
if pd.isna(stack) or stack == "" or stack is None:
|
571 |
-
return set()
|
572 |
-
if isinstance(stack, set):
|
573 |
-
return stack
|
574 |
-
try:
|
575 |
-
# Handle potential string representation of sets
|
576 |
-
if isinstance(stack, str) and stack.startswith("{") and stack.endswith("}"):
|
577 |
-
# This could be a string representation of a set
|
578 |
-
items = stack.strip("{}").split(",")
|
579 |
-
return set(item.strip().strip("'\"") for item in items if item.strip())
|
580 |
-
return set(map(lambda x: x.strip().lower(), str(stack).split(',')))
|
581 |
-
except Exception as e:
|
582 |
-
st.error(f"Error parsing tech stack: {e}")
|
583 |
-
return set()
|
584 |
-
|
585 |
-
def display_tech_stack(stack_set):
|
586 |
-
if isinstance(stack_set, set):
|
587 |
-
return ", ".join(sorted(stack_set))
|
588 |
-
return str(stack_set)
|
589 |
-
|
590 |
-
def get_matching_candidates(job_stack, candidates_df):
|
591 |
-
"""Find candidates with matching tech stack for a specific job"""
|
592 |
-
matched = []
|
593 |
-
job_stack_set = parse_tech_stack(job_stack)
|
594 |
-
|
595 |
-
for _, candidate in candidates_df.iterrows():
|
596 |
-
candidate_stack = parse_tech_stack(candidate['Key Tech Stack'])
|
597 |
-
common = job_stack_set & candidate_stack
|
598 |
-
if len(common) >= 2:
|
599 |
-
matched.append({
|
600 |
-
"Name": candidate["Full Name"],
|
601 |
-
"URL": candidate["LinkedIn URL"],
|
602 |
-
"Degree & Education": candidate["Degree & University"],
|
603 |
-
"Years of Experience": candidate["Years of Experience"],
|
604 |
-
"Current Title & Company": candidate['Current Title & Company'],
|
605 |
-
"Key Highlights": candidate["Key Highlights"],
|
606 |
-
"Location": candidate["Location (from most recent experience)"],
|
607 |
-
"Experience": str(candidate["Experience"]),
|
608 |
-
"Tech Stack": candidate_stack
|
609 |
-
})
|
610 |
-
return matched
|
611 |
-
|
612 |
-
def setup_llm():
|
613 |
-
"""Set up the LangChain LLM with structured output"""
|
614 |
-
# Define the model to use
|
615 |
-
model_name = "gpt-4o-mini"
|
616 |
-
|
617 |
-
# Store model name in session state for token calculation
|
618 |
-
if 'model_name' not in st.session_state:
|
619 |
-
st.session_state.model_name = model_name
|
620 |
-
|
621 |
-
# Create LLM instance
|
622 |
-
llm = ChatOpenAI(
|
623 |
-
model=model_name,
|
624 |
-
temperature=0,
|
625 |
-
max_tokens=None,
|
626 |
-
timeout=None,
|
627 |
-
max_retries=2,
|
628 |
-
)
|
629 |
-
|
630 |
-
# Create structured output
|
631 |
-
sum_llm = llm.with_structured_output(Shortlist)
|
632 |
-
|
633 |
-
# Create system prompt
|
634 |
-
system = """You are an expert Recruitor, your task is to analyse the Candidate profile and determine if it matches with the job details and provide a score(out of 10) indicating how compatible the
|
635 |
-
the profile is according to job.
|
636 |
-
Try to ensure following points while estimating the candidate's fit score:
|
637 |
-
For education:
|
638 |
-
Tier1 - MIT, Stanford, CMU, UC Berkeley, Caltech, Harvard, IIT Bombay, IIT Delhi, Princeton, UIUC, University of Washington, Columbia, University of Chicago, Cornell, University of Michigan (Ann Arbor), UT Austin - Maximum points
|
639 |
-
Tier2 - UC Davis, Georgia Tech, Purdue, UMass Amherst,etc - Moderate points
|
640 |
-
Tier3 - Unknown or unranked institutions - Lower points or reject
|
641 |
-
|
642 |
-
Startup Experience Requirement:
|
643 |
-
Candidates must have worked as a direct employee at a VC-backed startup (Seed to series C/D)
|
644 |
-
preferred - Y Combinator, Sequoia,a16z,Accel,Founders Fund,LightSpeed,Greylock,Benchmark,Index Ventures,etc.
|
645 |
-
|
646 |
-
The fit score signifies based on following metrics:
|
647 |
-
1–5 - Poor Fit - Auto-reject
|
648 |
-
6–7 - Weak Fit - Auto-reject
|
649 |
-
8.0–8.7 - Moderate Fit - Auto-reject
|
650 |
-
8.8–10 - STRONG Fit - Include in results
|
651 |
-
"""
|
652 |
-
|
653 |
-
# Create query prompt
|
654 |
-
query_prompt = ChatPromptTemplate.from_messages([
|
655 |
-
("system", system),
|
656 |
-
("human", """
|
657 |
-
You are an expert Recruitor, your task is to determine if the user is a correct match for the given job or not.
|
658 |
-
For this you will be provided with the follwing inputs of job and candidates:
|
659 |
-
Job Details
|
660 |
-
Company: {Company}
|
661 |
-
Role: {Role}
|
662 |
-
About Company: {desc}
|
663 |
-
Locations: {Locations}
|
664 |
-
Tech Stack: {Tech_Stack}
|
665 |
-
Industry: {Industry}
|
666 |
-
|
667 |
-
|
668 |
-
Candidate Details:
|
669 |
-
Full Name: {Full_Name}
|
670 |
-
LinkedIn URL: {LinkedIn_URL}
|
671 |
-
Current Title & Company: {Current_Title_Company}
|
672 |
-
Years of Experience: {Years_of_Experience}
|
673 |
-
Degree & University: {Degree_University}
|
674 |
-
Key Tech Stack: {Key_Tech_Stack}
|
675 |
-
Key Highlights: {Key_Highlights}
|
676 |
-
Location (from most recent experience): {cand_Location}
|
677 |
-
Past_Experience: {Experience}
|
678 |
-
|
679 |
-
|
680 |
-
Answer in the structured manner as per the schema.
|
681 |
-
If any parameter is Unknown try not to include in the summary, only include those parameters which are known.
|
682 |
-
"""),
|
683 |
-
])
|
684 |
-
|
685 |
-
# Chain the prompt and LLM
|
686 |
-
cat_class = query_prompt | sum_llm
|
687 |
-
|
688 |
-
return cat_class
|
689 |
-
|
690 |
-
def call_llm(candidate_data, job_data, llm_chain):
|
691 |
-
"""Call the actual LLM to evaluate the candidate"""
|
692 |
-
try:
|
693 |
-
# Convert tech stacks to strings for the LLM payload
|
694 |
-
job_tech_stack = job_data.get("Tech_Stack", set())
|
695 |
-
candidate_tech_stack = candidate_data.get("Tech Stack", set())
|
696 |
-
|
697 |
-
if isinstance(job_tech_stack, set):
|
698 |
-
job_tech_stack = ", ".join(sorted(job_tech_stack))
|
699 |
-
|
700 |
-
if isinstance(candidate_tech_stack, set):
|
701 |
-
candidate_tech_stack = ", ".join(sorted(candidate_tech_stack))
|
702 |
-
|
703 |
-
# Prepare payload for LLM
|
704 |
-
payload = {
|
705 |
-
"Company": job_data.get("Company", ""),
|
706 |
-
"Role": job_data.get("Role", ""),
|
707 |
-
"desc": job_data.get("desc", ""),
|
708 |
-
"Locations": job_data.get("Locations", ""),
|
709 |
-
"Tech_Stack": job_tech_stack,
|
710 |
-
"Industry": job_data.get("Industry", ""),
|
711 |
-
|
712 |
-
"Full_Name": candidate_data.get("Name", ""),
|
713 |
-
"LinkedIn_URL": candidate_data.get("URL", ""),
|
714 |
-
"Current_Title_Company": candidate_data.get("Current Title & Company", ""),
|
715 |
-
"Years_of_Experience": candidate_data.get("Years of Experience", ""),
|
716 |
-
"Degree_University": candidate_data.get("Degree & Education", ""),
|
717 |
-
"Key_Tech_Stack": candidate_tech_stack,
|
718 |
-
"Key_Highlights": candidate_data.get("Key Highlights", ""),
|
719 |
-
"cand_Location": candidate_data.get("Location", ""),
|
720 |
-
"Experience": candidate_data.get("Experience", "")
|
721 |
-
}
|
722 |
-
|
723 |
-
# Convert payload to a string for token calculation
|
724 |
-
payload_str = json.dumps(payload)
|
725 |
-
|
726 |
-
# Calculate input tokens
|
727 |
-
input_tokens = calculate_tokens(payload_str, st.session_state.model_name)
|
728 |
-
|
729 |
-
# Call LLM
|
730 |
-
response = llm_chain.invoke(payload)
|
731 |
-
print(candidate_data.get("Experience", ""))
|
732 |
-
|
733 |
-
# Convert response to string for token calculation
|
734 |
-
response_str = f"""
|
735 |
-
candidate_name: {response.candidate_name}
|
736 |
-
candidate_url: {response.candidate_url}
|
737 |
-
candidate_summary: {response.candidate_summary}
|
738 |
-
candidate_location: {response.candidate_location}
|
739 |
-
fit_score: {response.fit_score}
|
740 |
-
justification: {response.justification}
|
741 |
-
"""
|
742 |
-
|
743 |
-
# Calculate output tokens
|
744 |
-
output_tokens = calculate_tokens(response_str, st.session_state.model_name)
|
745 |
-
|
746 |
-
# Update token counts in session state
|
747 |
-
if 'total_input_tokens' not in st.session_state:
|
748 |
-
st.session_state.total_input_tokens = 0
|
749 |
-
if 'total_output_tokens' not in st.session_state:
|
750 |
-
st.session_state.total_output_tokens = 0
|
751 |
-
|
752 |
-
st.session_state.total_input_tokens += input_tokens
|
753 |
-
st.session_state.total_output_tokens += output_tokens
|
754 |
-
|
755 |
-
# Return response in expected format
|
756 |
-
return {
|
757 |
-
"candidate_name": response.candidate_name,
|
758 |
-
"candidate_url": response.candidate_url,
|
759 |
-
"candidate_summary": response.candidate_summary,
|
760 |
-
"candidate_location": response.candidate_location,
|
761 |
-
"fit_score": response.fit_score,
|
762 |
-
"justification": response.justification
|
763 |
-
}
|
764 |
-
except Exception as e:
|
765 |
-
st.error(f"Error calling LLM: {e}")
|
766 |
-
# Fallback to a default response
|
767 |
-
return {
|
768 |
-
"candidate_name": candidate_data.get("Name", "Unknown"),
|
769 |
-
"candidate_url": candidate_data.get("URL", ""),
|
770 |
-
"candidate_summary": "Error processing candidate profile",
|
771 |
-
"candidate_location": candidate_data.get("Location", "Unknown"),
|
772 |
-
"fit_score": 0.0,
|
773 |
-
"justification": f"Error in LLM processing: {str(e)}"
|
774 |
-
}
|
775 |
-
|
776 |
-
def process_candidates_for_job(job_row, candidates_df, llm_chain=None):
|
777 |
-
"""Process candidates for a specific job using the LLM"""
|
778 |
-
# Reset token counters for this job
|
779 |
-
st.session_state.total_input_tokens = 0
|
780 |
-
st.session_state.total_output_tokens = 0
|
781 |
-
|
782 |
-
if llm_chain is None:
|
783 |
-
with st.spinner("Setting up LLM..."):
|
784 |
-
llm_chain = setup_llm()
|
785 |
-
|
786 |
-
selected_candidates = []
|
787 |
-
|
788 |
-
try:
|
789 |
-
# Get job-specific data
|
790 |
-
job_data = {
|
791 |
-
"Company": job_row["Company"],
|
792 |
-
"Role": job_row["Role"],
|
793 |
-
"desc": job_row.get("One liner", ""),
|
794 |
-
"Locations": job_row.get("Locations", ""),
|
795 |
-
"Tech_Stack": job_row["Tech Stack"],
|
796 |
-
"Industry": job_row.get("Industry", "")
|
797 |
-
}
|
798 |
-
|
799 |
-
# Find matching candidates for this job
|
800 |
-
with st.spinner("Finding matching candidates based on tech stack..."):
|
801 |
-
matching_candidates = get_matching_candidates(job_row["Tech Stack"], candidates_df)
|
802 |
-
|
803 |
-
if not matching_candidates:
|
804 |
-
st.warning("No candidates with matching tech stack found for this job.")
|
805 |
-
return []
|
806 |
-
|
807 |
-
st.success(f"Found {len(matching_candidates)} candidates with matching tech stack.")
|
808 |
-
|
809 |
-
# Create progress elements
|
810 |
-
candidates_progress = st.progress(0)
|
811 |
-
candidate_status = st.empty()
|
812 |
-
|
813 |
-
# Process each candidate
|
814 |
-
for i, candidate_data in enumerate(matching_candidates):
|
815 |
-
# Update progress
|
816 |
-
candidates_progress.progress((i + 1) / len(matching_candidates))
|
817 |
-
candidate_status.text(f"Evaluating candidate {i+1}/{len(matching_candidates)}: {candidate_data.get('Name', 'Unknown')}")
|
818 |
-
|
819 |
-
# Process the candidate with the LLM
|
820 |
-
response = call_llm(candidate_data, job_data, llm_chain)
|
821 |
-
|
822 |
-
response_dict = {
|
823 |
-
"Name": response["candidate_name"],
|
824 |
-
"LinkedIn": response["candidate_url"],
|
825 |
-
"summary": response["candidate_summary"],
|
826 |
-
"Location": response["candidate_location"],
|
827 |
-
"Fit Score": response["fit_score"],
|
828 |
-
"justification": response["justification"],
|
829 |
-
# Add back original candidate data for context
|
830 |
-
"Educational Background": candidate_data.get("Degree & Education", ""),
|
831 |
-
"Years of Experience": candidate_data.get("Years of Experience", ""),
|
832 |
-
"Current Title & Company": candidate_data.get("Current Title & Company", "")
|
833 |
-
}
|
834 |
-
|
835 |
-
# Add to selected candidates if score is high enough
|
836 |
-
if response["fit_score"] >= 8.8:
|
837 |
-
selected_candidates.append(response_dict)
|
838 |
-
st.markdown(response_dict)
|
839 |
-
else:
|
840 |
-
st.write(f"Rejected candidate: {response_dict['Name']} with score: {response['fit_score']}")
|
841 |
-
|
842 |
-
# Clear progress indicators
|
843 |
-
candidates_progress.empty()
|
844 |
-
candidate_status.empty()
|
845 |
-
|
846 |
-
# Show results
|
847 |
-
if selected_candidates:
|
848 |
-
st.success(f"✅ Found {len(selected_candidates)} suitable candidates for this job!")
|
849 |
-
else:
|
850 |
-
st.info("No candidates met the minimum fit score threshold for this job.")
|
851 |
-
|
852 |
-
# Token usage is now displayed in display_job_selection when showing results
|
853 |
-
return selected_candidates
|
854 |
-
|
855 |
-
except Exception as e:
|
856 |
-
st.error(f"Error processing job: {e}")
|
857 |
-
return []
|
858 |
-
|
859 |
-
def main():
|
860 |
-
st.title("👨💻 Candidate Matching App")
|
861 |
-
|
862 |
-
# Initialize session state
|
863 |
-
if 'processed_jobs' not in st.session_state:
|
864 |
-
st.session_state.processed_jobs = {}
|
865 |
-
|
866 |
-
st.write("""
|
867 |
-
This app matches job listings with candidate profiles based on tech stack and other criteria.
|
868 |
-
Select a job to find matching candidates.
|
869 |
-
""")
|
870 |
-
|
871 |
-
# API Key input
|
872 |
-
with st.sidebar:
|
873 |
-
st.header("API Configuration")
|
874 |
-
api_key = st.text_input("Enter OpenAI API Key", type="password")
|
875 |
-
if api_key:
|
876 |
-
os.environ["OPENAI_API_KEY"] = api_key
|
877 |
-
st.success("API Key set!")
|
878 |
-
else:
|
879 |
-
st.warning("Please enter OpenAI API Key to use LLM features")
|
880 |
-
|
881 |
-
# Show API key warning if not set
|
882 |
-
SERVICE_ACCOUNT_FILE = 'synapse-recruitment-e94255ca76fd.json'
|
883 |
-
SCOPES = ['https://www.googleapis.com/auth/spreadsheets']
|
884 |
-
creds = service_account.Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES)
|
885 |
-
gc = gspread.authorize(creds)
|
886 |
-
job_sheet = gc.open_by_key('1BZlvbtFyiQ9Pgr_lpepDJua1ZeVEqrCLjssNd6OiG9k')
|
887 |
-
candidates_sheet = gc.open_by_key('1u_9o5f0MPHFUSScjEcnA8Lojm4Y9m9LuWhvjYm6ytF4')
|
888 |
-
|
889 |
-
if not api_key:
|
890 |
-
st.warning("⚠️ You need to provide an OpenAI API key in the sidebar to use this app.")
|
891 |
-
|
892 |
-
if api_key:
|
893 |
-
try:
|
894 |
-
# Load data from Google Sheets
|
895 |
-
job_worksheet = job_sheet.worksheet('paraform_jobs_formatted')
|
896 |
-
job_data = job_worksheet.get_all_values()
|
897 |
-
candidate_worksheet = candidates_sheet.worksheet('transformed_candidates_updated')
|
898 |
-
candidate_data = candidate_worksheet.get_all_values()
|
899 |
-
|
900 |
-
# Convert to DataFrames
|
901 |
-
jobs_df = pd.DataFrame(job_data[1:], columns=job_data[0])
|
902 |
-
candidates_df = pd.DataFrame(candidate_data[1:], columns=candidate_data[0])
|
903 |
-
candidates_df = candidates_df.fillna("Unknown")
|
904 |
-
|
905 |
-
# Display data preview
|
906 |
-
with st.expander("Preview uploaded data"):
|
907 |
-
st.subheader("Jobs Data Preview")
|
908 |
-
st.dataframe(jobs_df.head(3))
|
909 |
-
|
910 |
-
st.subheader("Candidates Data Preview")
|
911 |
-
st.dataframe(candidates_df.head(3))
|
912 |
-
|
913 |
-
# Map column names if needed
|
914 |
-
column_mapping = {
|
915 |
-
"Full Name": "Full Name",
|
916 |
-
"LinkedIn URL": "LinkedIn URL",
|
917 |
-
"Current Title & Company": "Current Title & Company",
|
918 |
-
"Years of Experience": "Years of Experience",
|
919 |
-
"Degree & University": "Degree & University",
|
920 |
-
"Key Tech Stack": "Key Tech Stack",
|
921 |
-
"Key Highlights": "Key Highlights",
|
922 |
-
"Location (from most recent experience)": "Location (from most recent experience)"
|
923 |
-
}
|
924 |
-
|
925 |
-
# Rename columns if they don't match expected
|
926 |
-
candidates_df = candidates_df.rename(columns={
|
927 |
-
col: mapping for col, mapping in column_mapping.items()
|
928 |
-
if col in candidates_df.columns and col != mapping
|
929 |
-
})
|
930 |
-
|
931 |
-
# Now, instead of processing all jobs upfront, we'll display job selection
|
932 |
-
# and only process the selected job when the user chooses it
|
933 |
-
display_job_selection(jobs_df, candidates_df)
|
934 |
-
|
935 |
-
except Exception as e:
|
936 |
-
st.error(f"Error processing files: {e}")
|
937 |
-
|
938 |
-
st.divider()
|
939 |
-
|
940 |
-
|
941 |
-
def display_job_selection(jobs_df, candidates_df):
|
942 |
-
# Store the LLM chain as a session state to avoid recreating it
|
943 |
-
if 'llm_chain' not in st.session_state:
|
944 |
-
st.session_state.llm_chain = None
|
945 |
-
|
946 |
-
st.subheader("Select a job to view potential matches")
|
947 |
-
|
948 |
-
# Create job options - but don't compute matches yet
|
949 |
-
job_options = []
|
950 |
-
for i, row in jobs_df.iterrows():
|
951 |
-
job_options.append(f"{row['Role']} at {row['Company']}")
|
952 |
-
|
953 |
-
if job_options:
|
954 |
-
selected_job_index = st.selectbox("Jobs:",
|
955 |
-
range(len(job_options)),
|
956 |
-
format_func=lambda x: job_options[x])
|
957 |
-
|
958 |
-
# Display job details
|
959 |
-
job_row = jobs_df.iloc[selected_job_index]
|
960 |
-
|
961 |
-
# Parse tech stack for display
|
962 |
-
job_row_stack = parse_tech_stack(job_row["Tech Stack"])
|
963 |
-
|
964 |
-
col1, col2 = st.columns([2, 1])
|
965 |
-
|
966 |
-
with col1:
|
967 |
-
st.subheader(f"Job Details: {job_row['Role']}")
|
968 |
-
|
969 |
-
job_details = {
|
970 |
-
"Company": job_row["Company"],
|
971 |
-
"Role": job_row["Role"],
|
972 |
-
"Description": job_row.get("One liner", "N/A"),
|
973 |
-
"Locations": job_row.get("Locations", "N/A"),
|
974 |
-
"Industry": job_row.get("Industry", "N/A"),
|
975 |
-
"Tech Stack": display_tech_stack(job_row_stack)
|
976 |
-
}
|
977 |
-
|
978 |
-
for key, value in job_details.items():
|
979 |
-
st.markdown(f"**{key}:** {value}")
|
980 |
-
|
981 |
-
# Create a key for this job in session state
|
982 |
-
job_key = f"job_{selected_job_index}_processed"
|
983 |
-
|
984 |
-
if job_key not in st.session_state:
|
985 |
-
st.session_state[job_key] = False
|
986 |
-
|
987 |
-
# Add a process button for this job
|
988 |
-
if not st.session_state[job_key]:
|
989 |
-
if st.button(f"Find Matching Candidates for this Job"):
|
990 |
-
if "OPENAI_API_KEY" not in os.environ or not os.environ["OPENAI_API_KEY"]:
|
991 |
-
st.error("Please enter your OpenAI API key in the sidebar before processing")
|
992 |
-
else:
|
993 |
-
# Process candidates for this job (only when requested)
|
994 |
-
selected_candidates = process_candidates_for_job(
|
995 |
-
job_row,
|
996 |
-
candidates_df,
|
997 |
-
st.session_state.llm_chain
|
998 |
-
)
|
999 |
-
|
1000 |
-
# Store the results and set as processed
|
1001 |
-
if 'Selected_Candidates' not in st.session_state:
|
1002 |
-
st.session_state.Selected_Candidates = {}
|
1003 |
-
st.session_state.Selected_Candidates[selected_job_index] = selected_candidates
|
1004 |
-
st.session_state[job_key] = True
|
1005 |
-
|
1006 |
-
# Store the LLM chain for reuse
|
1007 |
-
if st.session_state.llm_chain is None:
|
1008 |
-
st.session_state.llm_chain = setup_llm()
|
1009 |
-
|
1010 |
-
# Force refresh
|
1011 |
-
st.rerun()
|
1012 |
-
|
1013 |
-
# Display selected candidates if already processed
|
1014 |
-
if st.session_state[job_key] and 'Selected_Candidates' in st.session_state:
|
1015 |
-
selected_candidates = st.session_state.Selected_Candidates.get(selected_job_index, [])
|
1016 |
-
|
1017 |
-
# Display selected candidates
|
1018 |
-
st.subheader("Selected Candidates")
|
1019 |
-
|
1020 |
-
# Display token usage statistics (will persist until job is changed)
|
1021 |
-
if 'total_input_tokens' in st.session_state and 'total_output_tokens' in st.session_state:
|
1022 |
-
display_token_usage()
|
1023 |
-
|
1024 |
-
if len(selected_candidates) > 0:
|
1025 |
-
for i, candidate in enumerate(selected_candidates):
|
1026 |
-
with st.expander(f"{i+1}. {candidate['Name']} (Score: {candidate['Fit Score']})"):
|
1027 |
-
col1, col2 = st.columns([3, 1])
|
1028 |
-
|
1029 |
-
with col1:
|
1030 |
-
st.markdown(f"**Summary:** {candidate['summary']}")
|
1031 |
-
st.markdown(f"**Current:** {candidate['Current Title & Company']}")
|
1032 |
-
st.markdown(f"**Education:** {candidate['Educational Background']}")
|
1033 |
-
st.markdown(f"**Experience:** {candidate['Years of Experience']}")
|
1034 |
-
st.markdown(f"**Location:** {candidate['Location']}")
|
1035 |
-
st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**")
|
1036 |
-
|
1037 |
-
with col2:
|
1038 |
-
st.markdown(f"**Fit Score:** {candidate['Fit Score']}")
|
1039 |
-
|
1040 |
-
st.markdown("**Justification:**")
|
1041 |
-
st.info(candidate['justification'])
|
1042 |
-
else:
|
1043 |
-
st.info("No candidates met the minimum score threshold (8.8) for this job.")
|
1044 |
-
|
1045 |
-
# We don't show tech-matched candidates here since they are generated
|
1046 |
-
# during the LLM matching process now
|
1047 |
-
|
1048 |
-
# Add a reset button to start over
|
1049 |
-
if st.button("Reset and Process Again"):
|
1050 |
-
# Don't reset token counters here - we want them to persist
|
1051 |
-
st.session_state[job_key] = False
|
1052 |
-
st.rerun()
|
1053 |
-
|
1054 |
-
if __name__ == "__main__":
|
1055 |
main()
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import pandas as pd
|
3 |
+
# import json
|
4 |
+
# import os
|
5 |
+
# from pydantic import BaseModel, Field
|
6 |
+
# from typing import List, Set, Dict, Any, Optional
|
7 |
+
# import time
|
8 |
+
# from langchain_openai import ChatOpenAI
|
9 |
+
# from langchain_core.messages import HumanMessage
|
10 |
+
# from langchain_core.prompts import ChatPromptTemplate
|
11 |
+
# from langchain_core.output_parsers import StrOutputParser
|
12 |
+
# from langchain_core.prompts import PromptTemplate
|
13 |
+
# import gspread
|
14 |
+
# from google.oauth2 import service_account
|
15 |
+
|
16 |
+
# st.set_page_config(
|
17 |
+
# page_title="Candidate Matching App",
|
18 |
+
# page_icon="👨💻🎯",
|
19 |
+
# layout="wide"
|
20 |
+
# )
|
21 |
+
|
22 |
+
# # Define pydantic model for structured output
|
23 |
+
# class Shortlist(BaseModel):
|
24 |
+
# fit_score: float = Field(description="A score between 0 and 10 indicating how closely the candidate profile matches the job requirements.")
|
25 |
+
# candidate_name: str = Field(description="The name of the candidate.")
|
26 |
+
# candidate_url: str = Field(description="The URL of the candidate's LinkedIn profile.")
|
27 |
+
# candidate_summary: str = Field(description="A brief summary of the candidate's skills and experience along with its educational background.")
|
28 |
+
# candidate_location: str = Field(description="The location of the candidate.")
|
29 |
+
# justification: str = Field(description="Justification for the shortlisted candidate with the fit score")
|
30 |
+
|
31 |
+
# # Function to parse and normalize tech stacks
|
32 |
+
# def parse_tech_stack(stack):
|
33 |
+
# if pd.isna(stack) or stack == "" or stack is None:
|
34 |
+
# return set()
|
35 |
+
# if isinstance(stack, set):
|
36 |
+
# return stack
|
37 |
+
# try:
|
38 |
+
# # Handle potential string representation of sets
|
39 |
+
# if isinstance(stack, str) and stack.startswith("{") and stack.endswith("}"):
|
40 |
+
# # This could be a string representation of a set
|
41 |
+
# items = stack.strip("{}").split(",")
|
42 |
+
# return set(item.strip().strip("'\"") for item in items if item.strip())
|
43 |
+
# return set(map(lambda x: x.strip().lower(), str(stack).split(',')))
|
44 |
+
# except Exception as e:
|
45 |
+
# st.error(f"Error parsing tech stack: {e}")
|
46 |
+
# return set()
|
47 |
+
|
48 |
+
# def display_tech_stack(stack_set):
|
49 |
+
# if isinstance(stack_set, set):
|
50 |
+
# return ", ".join(sorted(stack_set))
|
51 |
+
# return str(stack_set)
|
52 |
+
|
53 |
+
# def get_matching_candidates(job_stack, candidates_df):
|
54 |
+
# """Find candidates with matching tech stack for a specific job"""
|
55 |
+
# matched = []
|
56 |
+
# job_stack_set = parse_tech_stack(job_stack)
|
57 |
+
|
58 |
+
# for _, candidate in candidates_df.iterrows():
|
59 |
+
# candidate_stack = parse_tech_stack(candidate['Key Tech Stack'])
|
60 |
+
# common = job_stack_set & candidate_stack
|
61 |
+
# if len(common) >= 2:
|
62 |
+
# matched.append({
|
63 |
+
# "Name": candidate["Full Name"],
|
64 |
+
# "URL": candidate["LinkedIn URL"],
|
65 |
+
# "Degree & Education": candidate["Degree & University"],
|
66 |
+
# "Years of Experience": candidate["Years of Experience"],
|
67 |
+
# "Current Title & Company": candidate['Current Title & Company'],
|
68 |
+
# "Key Highlights": candidate["Key Highlights"],
|
69 |
+
# "Location": candidate["Location (from most recent experience)"],
|
70 |
+
# "Experience": str(candidate["Experience"]),
|
71 |
+
# "Tech Stack": candidate_stack
|
72 |
+
# })
|
73 |
+
# return matched
|
74 |
+
|
75 |
+
# def setup_llm():
|
76 |
+
# """Set up the LangChain LLM with structured output"""
|
77 |
+
# # Create LLM instance
|
78 |
+
# llm = ChatOpenAI(
|
79 |
+
# model="gpt-4o-mini",
|
80 |
+
# temperature=0,
|
81 |
+
# max_tokens=None,
|
82 |
+
# timeout=None,
|
83 |
+
# max_retries=2,
|
84 |
+
# )
|
85 |
+
|
86 |
+
# # Create structured output
|
87 |
+
# sum_llm = llm.with_structured_output(Shortlist)
|
88 |
+
|
89 |
+
# # Create system prompt
|
90 |
+
# system = """You are an expert Recruitor, your task is to analyse the Candidate profile and determine if it matches with the job details and provide a score(out of 10) indicating how compatible the
|
91 |
+
# the profile is according to job.
|
92 |
+
# Try to ensure following points while estimating the candidate's fit score:
|
93 |
+
# For education:
|
94 |
+
# Tier1 - MIT, Stanford, CMU, UC Berkeley, Caltech, Harvard, IIT Bombay, IIT Delhi, Princeton, UIUC, University of Washington, Columbia, University of Chicago, Cornell, University of Michigan (Ann Arbor), UT Austin - Maximum points
|
95 |
+
# Tier2 - UC Davis, Georgia Tech, Purdue, UMass Amherst,etc - Moderate points
|
96 |
+
# Tier3 - Unknown or unranked institutions - Lower points or reject
|
97 |
+
|
98 |
+
# Startup Experience Requirement:
|
99 |
+
# Candidates must have worked as a direct employee at a VC-backed startup (Seed to series C/D)
|
100 |
+
# preferred - Y Combinator, Sequoia,a16z,Accel,Founders Fund,LightSpeed,Greylock,Benchmark,Index Ventures,etc.
|
101 |
+
|
102 |
+
# The fit score signifies based on following metrics:
|
103 |
+
# 1–5 - Poor Fit - Auto-reject
|
104 |
+
# 6–7 - Weak Fit - Auto-reject
|
105 |
+
# 8.0–8.7 - Moderate Fit - Auto-reject
|
106 |
+
# 8.8–10 - STRONG Fit - Include in results
|
107 |
+
# """
|
108 |
+
|
109 |
+
# # Create query prompt
|
110 |
+
# query_prompt = ChatPromptTemplate.from_messages([
|
111 |
+
# ("system", system),
|
112 |
+
# ("human", """
|
113 |
+
# You are an expert Recruitor, your task is to determine if the user is a correct match for the given job or not.
|
114 |
+
# For this you will be provided with the follwing inputs of job and candidates:
|
115 |
+
# Job Details
|
116 |
+
# Company: {Company}
|
117 |
+
# Role: {Role}
|
118 |
+
# About Company: {desc}
|
119 |
+
# Locations: {Locations}
|
120 |
+
# Tech Stack: {Tech_Stack}
|
121 |
+
# Industry: {Industry}
|
122 |
+
|
123 |
+
|
124 |
+
# Candidate Details:
|
125 |
+
# Full Name: {Full_Name}
|
126 |
+
# LinkedIn URL: {LinkedIn_URL}
|
127 |
+
# Current Title & Company: {Current_Title_Company}
|
128 |
+
# Years of Experience: {Years_of_Experience}
|
129 |
+
# Degree & University: {Degree_University}
|
130 |
+
# Key Tech Stack: {Key_Tech_Stack}
|
131 |
+
# Key Highlights: {Key_Highlights}
|
132 |
+
# Location (from most recent experience): {cand_Location}
|
133 |
+
# Past_Experience: {Experience}
|
134 |
+
|
135 |
+
|
136 |
+
# Answer in the structured manner as per the schema.
|
137 |
+
# If any parameter is Unknown try not to include in the summary, only include those parameters which are known.
|
138 |
+
# """),
|
139 |
+
# ])
|
140 |
+
|
141 |
+
# # Chain the prompt and LLM
|
142 |
+
# cat_class = query_prompt | sum_llm
|
143 |
+
|
144 |
+
# return cat_class
|
145 |
+
|
146 |
+
# def call_llm(candidate_data, job_data, llm_chain):
|
147 |
+
# """Call the actual LLM to evaluate the candidate"""
|
148 |
+
# try:
|
149 |
+
# # Convert tech stacks to strings for the LLM payload
|
150 |
+
# job_tech_stack = job_data.get("Tech_Stack", set())
|
151 |
+
# candidate_tech_stack = candidate_data.get("Tech Stack", set())
|
152 |
+
|
153 |
+
# if isinstance(job_tech_stack, set):
|
154 |
+
# job_tech_stack = ", ".join(sorted(job_tech_stack))
|
155 |
+
|
156 |
+
# if isinstance(candidate_tech_stack, set):
|
157 |
+
# candidate_tech_stack = ", ".join(sorted(candidate_tech_stack))
|
158 |
+
|
159 |
+
# # Prepare payload for LLM
|
160 |
+
# payload = {
|
161 |
+
# "Company": job_data.get("Company", ""),
|
162 |
+
# "Role": job_data.get("Role", ""),
|
163 |
+
# "desc": job_data.get("desc", ""),
|
164 |
+
# "Locations": job_data.get("Locations", ""),
|
165 |
+
# "Tech_Stack": job_tech_stack,
|
166 |
+
# "Industry": job_data.get("Industry", ""),
|
167 |
+
|
168 |
+
# "Full_Name": candidate_data.get("Name", ""),
|
169 |
+
# "LinkedIn_URL": candidate_data.get("URL", ""),
|
170 |
+
# "Current_Title_Company": candidate_data.get("Current Title & Company", ""),
|
171 |
+
# "Years_of_Experience": candidate_data.get("Years of Experience", ""),
|
172 |
+
# "Degree_University": candidate_data.get("Degree & Education", ""),
|
173 |
+
# "Key_Tech_Stack": candidate_tech_stack,
|
174 |
+
# "Key_Highlights": candidate_data.get("Key Highlights", ""),
|
175 |
+
# "cand_Location": candidate_data.get("Location", ""),
|
176 |
+
# "Experience": candidate_data.get("Experience", "")
|
177 |
+
# }
|
178 |
+
|
179 |
+
# # Call LLM
|
180 |
+
# response = llm_chain.invoke(payload)
|
181 |
+
# print(candidate_data.get("Experience", ""))
|
182 |
+
|
183 |
+
# # Return response in expected format
|
184 |
+
# return {
|
185 |
+
# "candidate_name": response.candidate_name,
|
186 |
+
# "candidate_url": response.candidate_url,
|
187 |
+
# "candidate_summary": response.candidate_summary,
|
188 |
+
# "candidate_location": response.candidate_location,
|
189 |
+
# "fit_score": response.fit_score,
|
190 |
+
# "justification": response.justification
|
191 |
+
# }
|
192 |
+
# except Exception as e:
|
193 |
+
# st.error(f"Error calling LLM: {e}")
|
194 |
+
# # Fallback to a default response
|
195 |
+
# return {
|
196 |
+
# "candidate_name": candidate_data.get("Name", "Unknown"),
|
197 |
+
# "candidate_url": candidate_data.get("URL", ""),
|
198 |
+
# "candidate_summary": "Error processing candidate profile",
|
199 |
+
# "candidate_location": candidate_data.get("Location", "Unknown"),
|
200 |
+
# "fit_score": 0.0,
|
201 |
+
# "justification": f"Error in LLM processing: {str(e)}"
|
202 |
+
# }
|
203 |
+
|
204 |
+
# def process_candidates_for_job(job_row, candidates_df, llm_chain=None):
|
205 |
+
# """Process candidates for a specific job using the LLM"""
|
206 |
+
# if llm_chain is None:
|
207 |
+
# with st.spinner("Setting up LLM..."):
|
208 |
+
# llm_chain = setup_llm()
|
209 |
+
|
210 |
+
# selected_candidates = []
|
211 |
+
|
212 |
+
# try:
|
213 |
+
# # Get job-specific data
|
214 |
+
# job_data = {
|
215 |
+
# "Company": job_row["Company"],
|
216 |
+
# "Role": job_row["Role"],
|
217 |
+
# "desc": job_row.get("One liner", ""),
|
218 |
+
# "Locations": job_row.get("Locations", ""),
|
219 |
+
# "Tech_Stack": job_row["Tech Stack"],
|
220 |
+
# "Industry": job_row.get("Industry", "")
|
221 |
+
# }
|
222 |
+
|
223 |
+
# # Find matching candidates for this job
|
224 |
+
# with st.spinner("Finding matching candidates based on tech stack..."):
|
225 |
+
# matching_candidates = get_matching_candidates(job_row["Tech Stack"], candidates_df)
|
226 |
+
|
227 |
+
# if not matching_candidates:
|
228 |
+
# st.warning("No candidates with matching tech stack found for this job.")
|
229 |
+
# return []
|
230 |
+
|
231 |
+
# st.success(f"Found {len(matching_candidates)} candidates with matching tech stack.")
|
232 |
+
|
233 |
+
# # Create progress elements
|
234 |
+
# candidates_progress = st.progress(0)
|
235 |
+
# candidate_status = st.empty()
|
236 |
+
|
237 |
+
# # Process each candidate
|
238 |
+
# for i, candidate_data in enumerate(matching_candidates):
|
239 |
+
# # Update progress
|
240 |
+
# candidates_progress.progress((i + 1) / len(matching_candidates))
|
241 |
+
# candidate_status.text(f"Evaluating candidate {i+1}/{len(matching_candidates)}: {candidate_data.get('Name', 'Unknown')}")
|
242 |
+
|
243 |
+
# # Process the candidate with the LLM
|
244 |
+
# response = call_llm(candidate_data, job_data, llm_chain)
|
245 |
+
|
246 |
+
# response_dict = {
|
247 |
+
# "Name": response["candidate_name"],
|
248 |
+
# "LinkedIn": response["candidate_url"],
|
249 |
+
# "summary": response["candidate_summary"],
|
250 |
+
# "Location": response["candidate_location"],
|
251 |
+
# "Fit Score": response["fit_score"],
|
252 |
+
# "justification": response["justification"],
|
253 |
+
# # Add back original candidate data for context
|
254 |
+
# "Educational Background": candidate_data.get("Degree & Education", ""),
|
255 |
+
# "Years of Experience": candidate_data.get("Years of Experience", ""),
|
256 |
+
# "Current Title & Company": candidate_data.get("Current Title & Company", "")
|
257 |
+
# }
|
258 |
+
|
259 |
+
# # Add to selected candidates if score is high enough
|
260 |
+
# if response["fit_score"] >= 8.8:
|
261 |
+
# selected_candidates.append(response_dict)
|
262 |
+
# st.markdown(response_dict)
|
263 |
+
# else:
|
264 |
+
# st.write(f"Rejected candidate: {response_dict['Name']} with score: {response['fit_score']}")
|
265 |
+
|
266 |
+
# # Clear progress indicators
|
267 |
+
# candidates_progress.empty()
|
268 |
+
# candidate_status.empty()
|
269 |
+
|
270 |
+
# # Show results
|
271 |
+
# if selected_candidates:
|
272 |
+
# st.success(f"✅ Found {len(selected_candidates)} suitable candidates for this job!")
|
273 |
+
# else:
|
274 |
+
# st.info("No candidates met the minimum fit score threshold for this job.")
|
275 |
+
|
276 |
+
# return selected_candidates
|
277 |
+
|
278 |
+
# except Exception as e:
|
279 |
+
# st.error(f"Error processing job: {e}")
|
280 |
+
# return []
|
281 |
+
|
282 |
+
# def main():
|
283 |
+
# st.title("👨💻 Candidate Matching App")
|
284 |
+
|
285 |
+
# # Initialize session state
|
286 |
+
# if 'processed_jobs' not in st.session_state:
|
287 |
+
# st.session_state.processed_jobs = {}
|
288 |
+
|
289 |
+
# st.write("""
|
290 |
+
# This app matches job listings with candidate profiles based on tech stack and other criteria.
|
291 |
+
# Select a job to find matching candidates.
|
292 |
+
# """)
|
293 |
+
|
294 |
+
# # API Key input
|
295 |
+
# with st.sidebar:
|
296 |
+
# st.header("API Configuration")
|
297 |
+
# api_key = st.text_input("Enter OpenAI API Key", type="password")
|
298 |
+
# if api_key:
|
299 |
+
# os.environ["OPENAI_API_KEY"] = api_key
|
300 |
+
# st.success("API Key set!")
|
301 |
+
# else:
|
302 |
+
# st.warning("Please enter OpenAI API Key to use LLM features")
|
303 |
+
|
304 |
+
# # Show API key warning if not set
|
305 |
+
# SERVICE_ACCOUNT_FILE = 'synapse-recruitment-e94255ca76fd.json'
|
306 |
+
# SCOPES = ['https://www.googleapis.com/auth/spreadsheets']
|
307 |
+
# creds = service_account.Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES)
|
308 |
+
# gc = gspread.authorize(creds)
|
309 |
+
# job_sheet = gc.open_by_key('1BZlvbtFyiQ9Pgr_lpepDJua1ZeVEqrCLjssNd6OiG9k')
|
310 |
+
# candidates_sheet = gc.open_by_key('1u_9o5f0MPHFUSScjEcnA8Lojm4Y9m9LuWhvjYm6ytF4')
|
311 |
+
|
312 |
+
# if not api_key:
|
313 |
+
# st.warning("⚠️ You need to provide an OpenAI API key in the sidebar to use this app.")
|
314 |
+
|
315 |
+
# if api_key:
|
316 |
+
# try:
|
317 |
+
# # Load data from Google Sheets
|
318 |
+
# job_worksheet = job_sheet.worksheet('paraform_jobs_formatted')
|
319 |
+
# job_data = job_worksheet.get_all_values()
|
320 |
+
# candidate_worksheet = candidates_sheet.worksheet('transformed_candidates_updated')
|
321 |
+
# candidate_data = candidate_worksheet.get_all_values()
|
322 |
+
|
323 |
+
# # Convert to DataFrames
|
324 |
+
# jobs_df = pd.DataFrame(job_data[1:], columns=job_data[0])
|
325 |
+
# candidates_df = pd.DataFrame(candidate_data[1:], columns=candidate_data[0])
|
326 |
+
# candidates_df = candidates_df.fillna("Unknown")
|
327 |
+
|
328 |
+
# # Display data preview
|
329 |
+
# with st.expander("Preview uploaded data"):
|
330 |
+
# st.subheader("Jobs Data Preview")
|
331 |
+
# st.dataframe(jobs_df.head(3))
|
332 |
+
|
333 |
+
# st.subheader("Candidates Data Preview")
|
334 |
+
# st.dataframe(candidates_df.head(3))
|
335 |
+
|
336 |
+
# # Map column names if needed
|
337 |
+
# column_mapping = {
|
338 |
+
# "Full Name": "Full Name",
|
339 |
+
# "LinkedIn URL": "LinkedIn URL",
|
340 |
+
# "Current Title & Company": "Current Title & Company",
|
341 |
+
# "Years of Experience": "Years of Experience",
|
342 |
+
# "Degree & University": "Degree & University",
|
343 |
+
# "Key Tech Stack": "Key Tech Stack",
|
344 |
+
# "Key Highlights": "Key Highlights",
|
345 |
+
# "Location (from most recent experience)": "Location (from most recent experience)"
|
346 |
+
# }
|
347 |
+
|
348 |
+
# # Rename columns if they don't match expected
|
349 |
+
# candidates_df = candidates_df.rename(columns={
|
350 |
+
# col: mapping for col, mapping in column_mapping.items()
|
351 |
+
# if col in candidates_df.columns and col != mapping
|
352 |
+
# })
|
353 |
+
|
354 |
+
# # Now, instead of processing all jobs upfront, we'll display job selection
|
355 |
+
# # and only process the selected job when the user chooses it
|
356 |
+
# display_job_selection(jobs_df, candidates_df)
|
357 |
+
|
358 |
+
# except Exception as e:
|
359 |
+
# st.error(f"Error processing files: {e}")
|
360 |
+
|
361 |
+
# st.divider()
|
362 |
+
|
363 |
+
|
364 |
+
# def display_job_selection(jobs_df, candidates_df):
|
365 |
+
# # Store the LLM chain as a session state to avoid recreating it
|
366 |
+
# if 'llm_chain' not in st.session_state:
|
367 |
+
# st.session_state.llm_chain = None
|
368 |
+
|
369 |
+
# st.subheader("Select a job to view potential matches")
|
370 |
+
|
371 |
+
# # Create job options - but don't compute matches yet
|
372 |
+
# job_options = []
|
373 |
+
# for i, row in jobs_df.iterrows():
|
374 |
+
# job_options.append(f"{row['Role']} at {row['Company']}")
|
375 |
+
|
376 |
+
# if job_options:
|
377 |
+
# selected_job_index = st.selectbox("Jobs:",
|
378 |
+
# range(len(job_options)),
|
379 |
+
# format_func=lambda x: job_options[x])
|
380 |
+
|
381 |
+
# # Display job details
|
382 |
+
# job_row = jobs_df.iloc[selected_job_index]
|
383 |
+
|
384 |
+
# # Parse tech stack for display
|
385 |
+
# job_row_stack = parse_tech_stack(job_row["Tech Stack"])
|
386 |
+
|
387 |
+
# col1, col2 = st.columns([2, 1])
|
388 |
+
|
389 |
+
# with col1:
|
390 |
+
# st.subheader(f"Job Details: {job_row['Role']}")
|
391 |
+
|
392 |
+
# job_details = {
|
393 |
+
# "Company": job_row["Company"],
|
394 |
+
# "Role": job_row["Role"],
|
395 |
+
# "Description": job_row.get("One liner", "N/A"),
|
396 |
+
# "Locations": job_row.get("Locations", "N/A"),
|
397 |
+
# "Industry": job_row.get("Industry", "N/A"),
|
398 |
+
# "Tech Stack": display_tech_stack(job_row_stack)
|
399 |
+
# }
|
400 |
+
|
401 |
+
# for key, value in job_details.items():
|
402 |
+
# st.markdown(f"**{key}:** {value}")
|
403 |
+
|
404 |
+
# # Create a key for this job in session state
|
405 |
+
# job_key = f"job_{selected_job_index}_processed"
|
406 |
+
|
407 |
+
# if job_key not in st.session_state:
|
408 |
+
# st.session_state[job_key] = False
|
409 |
+
|
410 |
+
# # Add a process button for this job
|
411 |
+
# if not st.session_state[job_key]:
|
412 |
+
# if st.button(f"Find Matching Candidates for this Job"):
|
413 |
+
# if "OPENAI_API_KEY" not in os.environ or not os.environ["OPENAI_API_KEY"]:
|
414 |
+
# st.error("Please enter your OpenAI API key in the sidebar before processing")
|
415 |
+
# else:
|
416 |
+
# # Process candidates for this job (only when requested)
|
417 |
+
# selected_candidates = process_candidates_for_job(
|
418 |
+
# job_row,
|
419 |
+
# candidates_df,
|
420 |
+
# st.session_state.llm_chain
|
421 |
+
# )
|
422 |
+
|
423 |
+
# # Store the results and set as processed
|
424 |
+
# if 'Selected_Candidates' not in st.session_state:
|
425 |
+
# st.session_state.Selected_Candidates = {}
|
426 |
+
# st.session_state.Selected_Candidates[selected_job_index] = selected_candidates
|
427 |
+
# st.session_state[job_key] = True
|
428 |
+
|
429 |
+
# # Store the LLM chain for reuse
|
430 |
+
# if st.session_state.llm_chain is None:
|
431 |
+
# st.session_state.llm_chain = setup_llm()
|
432 |
+
|
433 |
+
# # Force refresh
|
434 |
+
# st.rerun()
|
435 |
+
|
436 |
+
# # Display selected candidates if already processed
|
437 |
+
# if st.session_state[job_key] and 'Selected_Candidates' in st.session_state:
|
438 |
+
# selected_candidates = st.session_state.Selected_Candidates.get(selected_job_index, [])
|
439 |
+
|
440 |
+
# # Display selected candidates
|
441 |
+
# st.subheader("Selected Candidates")
|
442 |
+
|
443 |
+
# if len(selected_candidates) > 0:
|
444 |
+
# for i, candidate in enumerate(selected_candidates):
|
445 |
+
# with st.expander(f"{i+1}. {candidate['Name']} (Score: {candidate['Fit Score']})"):
|
446 |
+
# col1, col2 = st.columns([3, 1])
|
447 |
+
|
448 |
+
# with col1:
|
449 |
+
# st.markdown(f"**Summary:** {candidate['summary']}")
|
450 |
+
# st.markdown(f"**Current:** {candidate['Current Title & Company']}")
|
451 |
+
# st.markdown(f"**Education:** {candidate['Educational Background']}")
|
452 |
+
# st.markdown(f"**Experience:** {candidate['Years of Experience']}")
|
453 |
+
# st.markdown(f"**Location:** {candidate['Location']}")
|
454 |
+
# st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**")
|
455 |
+
|
456 |
+
# with col2:
|
457 |
+
# st.markdown(f"**Fit Score:** {candidate['Fit Score']}")
|
458 |
+
|
459 |
+
# st.markdown("**Justification:**")
|
460 |
+
# st.info(candidate['justification'])
|
461 |
+
# else:
|
462 |
+
# st.info("No candidates met the minimum score threshold (8.8) for this job.")
|
463 |
+
|
464 |
+
# # We don't show tech-matched candidates here since they are generated
|
465 |
+
# # during the LLM matching process now
|
466 |
+
|
467 |
+
# # Add a reset button to start over
|
468 |
+
# if st.button("Reset and Process Again"):
|
469 |
+
# st.session_state[job_key] = False
|
470 |
+
# st.rerun()
|
471 |
+
|
472 |
+
# if __name__ == "__main__":
|
473 |
+
# main()
|
474 |
+
|
475 |
+
|
476 |
+
|
477 |
+
import streamlit as st
|
478 |
+
import pandas as pd
|
479 |
+
import json
|
480 |
+
import os
|
481 |
+
from pydantic import BaseModel, Field
|
482 |
+
from typing import List, Set, Dict, Any, Optional
|
483 |
+
import time
|
484 |
+
from langchain_openai import ChatOpenAI
|
485 |
+
from langchain_core.messages import HumanMessage
|
486 |
+
from langchain_core.prompts import ChatPromptTemplate
|
487 |
+
from langchain_core.output_parsers import StrOutputParser
|
488 |
+
from langchain_core.prompts import PromptTemplate
|
489 |
+
import gspread
|
490 |
+
from google.oauth2 import service_account
|
491 |
+
import tiktoken
|
492 |
+
|
493 |
+
st.set_page_config(
|
494 |
+
page_title="Candidate Matching App",
|
495 |
+
page_icon="👨💻🎯",
|
496 |
+
layout="wide"
|
497 |
+
)
|
498 |
+
|
499 |
+
# Define pydantic model for structured output
|
500 |
+
class Shortlist(BaseModel):
|
501 |
+
fit_score: float = Field(description="A score between 0 and 10 indicating how closely the candidate profile matches the job requirements.")
|
502 |
+
candidate_name: str = Field(description="The name of the candidate.")
|
503 |
+
candidate_url: str = Field(description="The URL of the candidate's LinkedIn profile.")
|
504 |
+
candidate_summary: str = Field(description="A brief summary of the candidate's skills and experience along with its educational background.")
|
505 |
+
candidate_location: str = Field(description="The location of the candidate.")
|
506 |
+
justification: str = Field(description="Justification for the shortlisted candidate with the fit score")
|
507 |
+
|
508 |
+
# Function to calculate tokens
|
509 |
+
def calculate_tokens(text, model="gpt-4o-mini"):
|
510 |
+
"""Calculate the number of tokens in a given text for a specific model"""
|
511 |
+
try:
|
512 |
+
# Get the encoding for the model
|
513 |
+
if "gpt-4" in model:
|
514 |
+
encoding = tiktoken.encoding_for_model("gpt-4o-mini")
|
515 |
+
elif "gpt-3.5" in model:
|
516 |
+
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
|
517 |
+
else:
|
518 |
+
encoding = tiktoken.get_encoding("cl100k_base") # Default for newer models
|
519 |
+
|
520 |
+
# Encode the text and return the token count
|
521 |
+
return len(encoding.encode(text))
|
522 |
+
except Exception as e:
|
523 |
+
# If there's an error, make a rough estimate (1 token ≈ 4 chars)
|
524 |
+
return len(text) // 4
|
525 |
+
|
526 |
+
# Function to display token usage
|
527 |
+
def display_token_usage():
|
528 |
+
"""Display token usage statistics"""
|
529 |
+
if 'total_input_tokens' not in st.session_state:
|
530 |
+
st.session_state.total_input_tokens = 0
|
531 |
+
if 'total_output_tokens' not in st.session_state:
|
532 |
+
st.session_state.total_output_tokens = 0
|
533 |
+
|
534 |
+
total_input = st.session_state.total_input_tokens
|
535 |
+
total_output = st.session_state.total_output_tokens
|
536 |
+
total_tokens = total_input + total_output
|
537 |
+
|
538 |
+
# Estimate cost based on model
|
539 |
+
if st.session_state.model_name == "gpt-4o-mini":
|
540 |
+
input_cost_per_1k = 0.0003 # $0.0003 per 1K input tokens
|
541 |
+
output_cost_per_1k = 0.0006 # $$0.0006 per 1K output tokens
|
542 |
+
elif "gpt-4" in st.session_state.model_name:
|
543 |
+
input_cost_per_1k = 0.005 # $0.30 per 1K input tokens
|
544 |
+
output_cost_per_1k = 0.60 # $0.60 per 1K output tokens
|
545 |
+
else: # Assume gpt-3.5-turbo pricing
|
546 |
+
input_cost_per_1k = 0.0015 # $0.0015 per 1K input tokens
|
547 |
+
output_cost_per_1k = 0.015 # $0.002 per 1K output tokens
|
548 |
+
|
549 |
+
estimated_cost = (total_input / 1000 * input_cost_per_1k) + (total_output / 1000 * output_cost_per_1k)
|
550 |
+
|
551 |
+
st.subheader("📊 Token Usage Statistics")
|
552 |
+
|
553 |
+
col1, col2, col3 = st.columns(3)
|
554 |
+
|
555 |
+
with col1:
|
556 |
+
st.metric("Input Tokens", f"{total_input:,}")
|
557 |
+
|
558 |
+
with col2:
|
559 |
+
st.metric("Output Tokens", f"{total_output:,}")
|
560 |
+
|
561 |
+
with col3:
|
562 |
+
st.metric("Total Tokens", f"{total_tokens:,}")
|
563 |
+
|
564 |
+
st.markdown(f"**Estimated Cost:** ${estimated_cost:.4f}")
|
565 |
+
|
566 |
+
return total_tokens
|
567 |
+
|
568 |
+
# Function to parse and normalize tech stacks
|
569 |
+
def parse_tech_stack(stack):
|
570 |
+
if pd.isna(stack) or stack == "" or stack is None:
|
571 |
+
return set()
|
572 |
+
if isinstance(stack, set):
|
573 |
+
return stack
|
574 |
+
try:
|
575 |
+
# Handle potential string representation of sets
|
576 |
+
if isinstance(stack, str) and stack.startswith("{") and stack.endswith("}"):
|
577 |
+
# This could be a string representation of a set
|
578 |
+
items = stack.strip("{}").split(",")
|
579 |
+
return set(item.strip().strip("'\"") for item in items if item.strip())
|
580 |
+
return set(map(lambda x: x.strip().lower(), str(stack).split(',')))
|
581 |
+
except Exception as e:
|
582 |
+
st.error(f"Error parsing tech stack: {e}")
|
583 |
+
return set()
|
584 |
+
|
585 |
+
def display_tech_stack(stack_set):
|
586 |
+
if isinstance(stack_set, set):
|
587 |
+
return ", ".join(sorted(stack_set))
|
588 |
+
return str(stack_set)
|
589 |
+
|
590 |
+
def get_matching_candidates(job_stack, candidates_df):
|
591 |
+
"""Find candidates with matching tech stack for a specific job"""
|
592 |
+
matched = []
|
593 |
+
job_stack_set = parse_tech_stack(job_stack)
|
594 |
+
|
595 |
+
for _, candidate in candidates_df.iterrows():
|
596 |
+
candidate_stack = parse_tech_stack(candidate['Key Tech Stack'])
|
597 |
+
common = job_stack_set & candidate_stack
|
598 |
+
if len(common) >= 2:
|
599 |
+
matched.append({
|
600 |
+
"Name": candidate["Full Name"],
|
601 |
+
"URL": candidate["LinkedIn URL"],
|
602 |
+
"Degree & Education": candidate["Degree & University"],
|
603 |
+
"Years of Experience": candidate["Years of Experience"],
|
604 |
+
"Current Title & Company": candidate['Current Title & Company'],
|
605 |
+
"Key Highlights": candidate["Key Highlights"],
|
606 |
+
"Location": candidate["Location (from most recent experience)"],
|
607 |
+
"Experience": str(candidate["Experience"]),
|
608 |
+
"Tech Stack": candidate_stack
|
609 |
+
})
|
610 |
+
return matched
|
611 |
+
|
612 |
+
def setup_llm():
|
613 |
+
"""Set up the LangChain LLM with structured output"""
|
614 |
+
# Define the model to use
|
615 |
+
model_name = "gpt-4o-mini"
|
616 |
+
|
617 |
+
# Store model name in session state for token calculation
|
618 |
+
if 'model_name' not in st.session_state:
|
619 |
+
st.session_state.model_name = model_name
|
620 |
+
|
621 |
+
# Create LLM instance
|
622 |
+
llm = ChatOpenAI(
|
623 |
+
model=model_name,
|
624 |
+
temperature=0,
|
625 |
+
max_tokens=None,
|
626 |
+
timeout=None,
|
627 |
+
max_retries=2,
|
628 |
+
)
|
629 |
+
|
630 |
+
# Create structured output
|
631 |
+
sum_llm = llm.with_structured_output(Shortlist)
|
632 |
+
|
633 |
+
# Create system prompt
|
634 |
+
system = """You are an expert Recruitor, your task is to analyse the Candidate profile and determine if it matches with the job details and provide a score(out of 10) indicating how compatible the
|
635 |
+
the profile is according to job.
|
636 |
+
Try to ensure following points while estimating the candidate's fit score:
|
637 |
+
For education:
|
638 |
+
Tier1 - MIT, Stanford, CMU, UC Berkeley, Caltech, Harvard, IIT Bombay, IIT Delhi, Princeton, UIUC, University of Washington, Columbia, University of Chicago, Cornell, University of Michigan (Ann Arbor), UT Austin - Maximum points
|
639 |
+
Tier2 - UC Davis, Georgia Tech, Purdue, UMass Amherst,etc - Moderate points
|
640 |
+
Tier3 - Unknown or unranked institutions - Lower points or reject
|
641 |
+
|
642 |
+
Startup Experience Requirement:
|
643 |
+
Candidates must have worked as a direct employee at a VC-backed startup (Seed to series C/D)
|
644 |
+
preferred - Y Combinator, Sequoia,a16z,Accel,Founders Fund,LightSpeed,Greylock,Benchmark,Index Ventures,etc.
|
645 |
+
|
646 |
+
The fit score signifies based on following metrics:
|
647 |
+
1–5 - Poor Fit - Auto-reject
|
648 |
+
6–7 - Weak Fit - Auto-reject
|
649 |
+
8.0–8.7 - Moderate Fit - Auto-reject
|
650 |
+
8.8–10 - STRONG Fit - Include in results
|
651 |
+
"""
|
652 |
+
|
653 |
+
# Create query prompt
|
654 |
+
query_prompt = ChatPromptTemplate.from_messages([
|
655 |
+
("system", system),
|
656 |
+
("human", """
|
657 |
+
You are an expert Recruitor, your task is to determine if the user is a correct match for the given job or not.
|
658 |
+
For this you will be provided with the follwing inputs of job and candidates:
|
659 |
+
Job Details
|
660 |
+
Company: {Company}
|
661 |
+
Role: {Role}
|
662 |
+
About Company: {desc}
|
663 |
+
Locations: {Locations}
|
664 |
+
Tech Stack: {Tech_Stack}
|
665 |
+
Industry: {Industry}
|
666 |
+
|
667 |
+
|
668 |
+
Candidate Details:
|
669 |
+
Full Name: {Full_Name}
|
670 |
+
LinkedIn URL: {LinkedIn_URL}
|
671 |
+
Current Title & Company: {Current_Title_Company}
|
672 |
+
Years of Experience: {Years_of_Experience}
|
673 |
+
Degree & University: {Degree_University}
|
674 |
+
Key Tech Stack: {Key_Tech_Stack}
|
675 |
+
Key Highlights: {Key_Highlights}
|
676 |
+
Location (from most recent experience): {cand_Location}
|
677 |
+
Past_Experience: {Experience}
|
678 |
+
|
679 |
+
|
680 |
+
Answer in the structured manner as per the schema.
|
681 |
+
If any parameter is Unknown try not to include in the summary, only include those parameters which are known.
|
682 |
+
"""),
|
683 |
+
])
|
684 |
+
|
685 |
+
# Chain the prompt and LLM
|
686 |
+
cat_class = query_prompt | sum_llm
|
687 |
+
|
688 |
+
return cat_class
|
689 |
+
|
690 |
+
def call_llm(candidate_data, job_data, llm_chain):
|
691 |
+
"""Call the actual LLM to evaluate the candidate"""
|
692 |
+
try:
|
693 |
+
# Convert tech stacks to strings for the LLM payload
|
694 |
+
job_tech_stack = job_data.get("Tech_Stack", set())
|
695 |
+
candidate_tech_stack = candidate_data.get("Tech Stack", set())
|
696 |
+
|
697 |
+
if isinstance(job_tech_stack, set):
|
698 |
+
job_tech_stack = ", ".join(sorted(job_tech_stack))
|
699 |
+
|
700 |
+
if isinstance(candidate_tech_stack, set):
|
701 |
+
candidate_tech_stack = ", ".join(sorted(candidate_tech_stack))
|
702 |
+
|
703 |
+
# Prepare payload for LLM
|
704 |
+
payload = {
|
705 |
+
"Company": job_data.get("Company", ""),
|
706 |
+
"Role": job_data.get("Role", ""),
|
707 |
+
"desc": job_data.get("desc", ""),
|
708 |
+
"Locations": job_data.get("Locations", ""),
|
709 |
+
"Tech_Stack": job_tech_stack,
|
710 |
+
"Industry": job_data.get("Industry", ""),
|
711 |
+
|
712 |
+
"Full_Name": candidate_data.get("Name", ""),
|
713 |
+
"LinkedIn_URL": candidate_data.get("URL", ""),
|
714 |
+
"Current_Title_Company": candidate_data.get("Current Title & Company", ""),
|
715 |
+
"Years_of_Experience": candidate_data.get("Years of Experience", ""),
|
716 |
+
"Degree_University": candidate_data.get("Degree & Education", ""),
|
717 |
+
"Key_Tech_Stack": candidate_tech_stack,
|
718 |
+
"Key_Highlights": candidate_data.get("Key Highlights", ""),
|
719 |
+
"cand_Location": candidate_data.get("Location", ""),
|
720 |
+
"Experience": candidate_data.get("Experience", "")
|
721 |
+
}
|
722 |
+
|
723 |
+
# Convert payload to a string for token calculation
|
724 |
+
payload_str = json.dumps(payload)
|
725 |
+
|
726 |
+
# Calculate input tokens
|
727 |
+
input_tokens = calculate_tokens(payload_str, st.session_state.model_name)
|
728 |
+
|
729 |
+
# Call LLM
|
730 |
+
response = llm_chain.invoke(payload)
|
731 |
+
print(candidate_data.get("Experience", ""))
|
732 |
+
|
733 |
+
# Convert response to string for token calculation
|
734 |
+
response_str = f"""
|
735 |
+
candidate_name: {response.candidate_name}
|
736 |
+
candidate_url: {response.candidate_url}
|
737 |
+
candidate_summary: {response.candidate_summary}
|
738 |
+
candidate_location: {response.candidate_location}
|
739 |
+
fit_score: {response.fit_score}
|
740 |
+
justification: {response.justification}
|
741 |
+
"""
|
742 |
+
|
743 |
+
# Calculate output tokens
|
744 |
+
output_tokens = calculate_tokens(response_str, st.session_state.model_name)
|
745 |
+
|
746 |
+
# Update token counts in session state
|
747 |
+
if 'total_input_tokens' not in st.session_state:
|
748 |
+
st.session_state.total_input_tokens = 0
|
749 |
+
if 'total_output_tokens' not in st.session_state:
|
750 |
+
st.session_state.total_output_tokens = 0
|
751 |
+
|
752 |
+
st.session_state.total_input_tokens += input_tokens
|
753 |
+
st.session_state.total_output_tokens += output_tokens
|
754 |
+
|
755 |
+
# Return response in expected format
|
756 |
+
return {
|
757 |
+
"candidate_name": response.candidate_name,
|
758 |
+
"candidate_url": response.candidate_url,
|
759 |
+
"candidate_summary": response.candidate_summary,
|
760 |
+
"candidate_location": response.candidate_location,
|
761 |
+
"fit_score": response.fit_score,
|
762 |
+
"justification": response.justification
|
763 |
+
}
|
764 |
+
except Exception as e:
|
765 |
+
st.error(f"Error calling LLM: {e}")
|
766 |
+
# Fallback to a default response
|
767 |
+
return {
|
768 |
+
"candidate_name": candidate_data.get("Name", "Unknown"),
|
769 |
+
"candidate_url": candidate_data.get("URL", ""),
|
770 |
+
"candidate_summary": "Error processing candidate profile",
|
771 |
+
"candidate_location": candidate_data.get("Location", "Unknown"),
|
772 |
+
"fit_score": 0.0,
|
773 |
+
"justification": f"Error in LLM processing: {str(e)}"
|
774 |
+
}
|
775 |
+
|
776 |
+
def process_candidates_for_job(job_row, candidates_df, llm_chain=None):
|
777 |
+
"""Process candidates for a specific job using the LLM"""
|
778 |
+
# Reset token counters for this job
|
779 |
+
st.session_state.total_input_tokens = 0
|
780 |
+
st.session_state.total_output_tokens = 0
|
781 |
+
|
782 |
+
if llm_chain is None:
|
783 |
+
with st.spinner("Setting up LLM..."):
|
784 |
+
llm_chain = setup_llm()
|
785 |
+
|
786 |
+
selected_candidates = []
|
787 |
+
|
788 |
+
try:
|
789 |
+
# Get job-specific data
|
790 |
+
job_data = {
|
791 |
+
"Company": job_row["Company"],
|
792 |
+
"Role": job_row["Role"],
|
793 |
+
"desc": job_row.get("One liner", ""),
|
794 |
+
"Locations": job_row.get("Locations", ""),
|
795 |
+
"Tech_Stack": job_row["Tech Stack"],
|
796 |
+
"Industry": job_row.get("Industry", "")
|
797 |
+
}
|
798 |
+
|
799 |
+
# Find matching candidates for this job
|
800 |
+
with st.spinner("Finding matching candidates based on tech stack..."):
|
801 |
+
matching_candidates = get_matching_candidates(job_row["Tech Stack"], candidates_df)
|
802 |
+
|
803 |
+
if not matching_candidates:
|
804 |
+
st.warning("No candidates with matching tech stack found for this job.")
|
805 |
+
return []
|
806 |
+
|
807 |
+
st.success(f"Found {len(matching_candidates)} candidates with matching tech stack.")
|
808 |
+
|
809 |
+
# Create progress elements
|
810 |
+
candidates_progress = st.progress(0)
|
811 |
+
candidate_status = st.empty()
|
812 |
+
|
813 |
+
# Process each candidate
|
814 |
+
for i, candidate_data in enumerate(matching_candidates):
|
815 |
+
# Update progress
|
816 |
+
candidates_progress.progress((i + 1) / len(matching_candidates))
|
817 |
+
candidate_status.text(f"Evaluating candidate {i+1}/{len(matching_candidates)}: {candidate_data.get('Name', 'Unknown')}")
|
818 |
+
|
819 |
+
# Process the candidate with the LLM
|
820 |
+
response = call_llm(candidate_data, job_data, llm_chain)
|
821 |
+
|
822 |
+
response_dict = {
|
823 |
+
"Name": response["candidate_name"],
|
824 |
+
"LinkedIn": response["candidate_url"],
|
825 |
+
"summary": response["candidate_summary"],
|
826 |
+
"Location": response["candidate_location"],
|
827 |
+
"Fit Score": response["fit_score"],
|
828 |
+
"justification": response["justification"],
|
829 |
+
# Add back original candidate data for context
|
830 |
+
"Educational Background": candidate_data.get("Degree & Education", ""),
|
831 |
+
"Years of Experience": candidate_data.get("Years of Experience", ""),
|
832 |
+
"Current Title & Company": candidate_data.get("Current Title & Company", "")
|
833 |
+
}
|
834 |
+
|
835 |
+
# Add to selected candidates if score is high enough
|
836 |
+
if response["fit_score"] >= 8.8:
|
837 |
+
selected_candidates.append(response_dict)
|
838 |
+
st.markdown(response_dict)
|
839 |
+
else:
|
840 |
+
st.write(f"Rejected candidate: {response_dict['Name']} with score: {response['fit_score']}")
|
841 |
+
|
842 |
+
# Clear progress indicators
|
843 |
+
candidates_progress.empty()
|
844 |
+
candidate_status.empty()
|
845 |
+
|
846 |
+
# Show results
|
847 |
+
if selected_candidates:
|
848 |
+
st.success(f"✅ Found {len(selected_candidates)} suitable candidates for this job!")
|
849 |
+
else:
|
850 |
+
st.info("No candidates met the minimum fit score threshold for this job.")
|
851 |
+
|
852 |
+
# Token usage is now displayed in display_job_selection when showing results
|
853 |
+
return selected_candidates
|
854 |
+
|
855 |
+
except Exception as e:
|
856 |
+
st.error(f"Error processing job: {e}")
|
857 |
+
return []
|
858 |
+
|
859 |
+
def main():
|
860 |
+
st.title("👨💻 Candidate Matching App")
|
861 |
+
|
862 |
+
# Initialize session state
|
863 |
+
if 'processed_jobs' not in st.session_state:
|
864 |
+
st.session_state.processed_jobs = {}
|
865 |
+
|
866 |
+
st.write("""
|
867 |
+
This app matches job listings with candidate profiles based on tech stack and other criteria.
|
868 |
+
Select a job to find matching candidates.
|
869 |
+
""")
|
870 |
+
|
871 |
+
# API Key input
|
872 |
+
with st.sidebar:
|
873 |
+
st.header("API Configuration")
|
874 |
+
api_key = st.text_input("Enter OpenAI API Key", type="password")
|
875 |
+
if api_key:
|
876 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
877 |
+
st.success("API Key set!")
|
878 |
+
else:
|
879 |
+
st.warning("Please enter OpenAI API Key to use LLM features")
|
880 |
+
|
881 |
+
# Show API key warning if not set
|
882 |
+
SERVICE_ACCOUNT_FILE = 'src/synapse-recruitment-e94255ca76fd.json'
|
883 |
+
SCOPES = ['https://www.googleapis.com/auth/spreadsheets']
|
884 |
+
creds = service_account.Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES)
|
885 |
+
gc = gspread.authorize(creds)
|
886 |
+
job_sheet = gc.open_by_key('1BZlvbtFyiQ9Pgr_lpepDJua1ZeVEqrCLjssNd6OiG9k')
|
887 |
+
candidates_sheet = gc.open_by_key('1u_9o5f0MPHFUSScjEcnA8Lojm4Y9m9LuWhvjYm6ytF4')
|
888 |
+
|
889 |
+
if not api_key:
|
890 |
+
st.warning("⚠️ You need to provide an OpenAI API key in the sidebar to use this app.")
|
891 |
+
|
892 |
+
if api_key:
|
893 |
+
try:
|
894 |
+
# Load data from Google Sheets
|
895 |
+
job_worksheet = job_sheet.worksheet('paraform_jobs_formatted')
|
896 |
+
job_data = job_worksheet.get_all_values()
|
897 |
+
candidate_worksheet = candidates_sheet.worksheet('transformed_candidates_updated')
|
898 |
+
candidate_data = candidate_worksheet.get_all_values()
|
899 |
+
|
900 |
+
# Convert to DataFrames
|
901 |
+
jobs_df = pd.DataFrame(job_data[1:], columns=job_data[0])
|
902 |
+
candidates_df = pd.DataFrame(candidate_data[1:], columns=candidate_data[0])
|
903 |
+
candidates_df = candidates_df.fillna("Unknown")
|
904 |
+
|
905 |
+
# Display data preview
|
906 |
+
with st.expander("Preview uploaded data"):
|
907 |
+
st.subheader("Jobs Data Preview")
|
908 |
+
st.dataframe(jobs_df.head(3))
|
909 |
+
|
910 |
+
st.subheader("Candidates Data Preview")
|
911 |
+
st.dataframe(candidates_df.head(3))
|
912 |
+
|
913 |
+
# Map column names if needed
|
914 |
+
column_mapping = {
|
915 |
+
"Full Name": "Full Name",
|
916 |
+
"LinkedIn URL": "LinkedIn URL",
|
917 |
+
"Current Title & Company": "Current Title & Company",
|
918 |
+
"Years of Experience": "Years of Experience",
|
919 |
+
"Degree & University": "Degree & University",
|
920 |
+
"Key Tech Stack": "Key Tech Stack",
|
921 |
+
"Key Highlights": "Key Highlights",
|
922 |
+
"Location (from most recent experience)": "Location (from most recent experience)"
|
923 |
+
}
|
924 |
+
|
925 |
+
# Rename columns if they don't match expected
|
926 |
+
candidates_df = candidates_df.rename(columns={
|
927 |
+
col: mapping for col, mapping in column_mapping.items()
|
928 |
+
if col in candidates_df.columns and col != mapping
|
929 |
+
})
|
930 |
+
|
931 |
+
# Now, instead of processing all jobs upfront, we'll display job selection
|
932 |
+
# and only process the selected job when the user chooses it
|
933 |
+
display_job_selection(jobs_df, candidates_df)
|
934 |
+
|
935 |
+
except Exception as e:
|
936 |
+
st.error(f"Error processing files: {e}")
|
937 |
+
|
938 |
+
st.divider()
|
939 |
+
|
940 |
+
|
941 |
+
def display_job_selection(jobs_df, candidates_df):
|
942 |
+
# Store the LLM chain as a session state to avoid recreating it
|
943 |
+
if 'llm_chain' not in st.session_state:
|
944 |
+
st.session_state.llm_chain = None
|
945 |
+
|
946 |
+
st.subheader("Select a job to view potential matches")
|
947 |
+
|
948 |
+
# Create job options - but don't compute matches yet
|
949 |
+
job_options = []
|
950 |
+
for i, row in jobs_df.iterrows():
|
951 |
+
job_options.append(f"{row['Role']} at {row['Company']}")
|
952 |
+
|
953 |
+
if job_options:
|
954 |
+
selected_job_index = st.selectbox("Jobs:",
|
955 |
+
range(len(job_options)),
|
956 |
+
format_func=lambda x: job_options[x])
|
957 |
+
|
958 |
+
# Display job details
|
959 |
+
job_row = jobs_df.iloc[selected_job_index]
|
960 |
+
|
961 |
+
# Parse tech stack for display
|
962 |
+
job_row_stack = parse_tech_stack(job_row["Tech Stack"])
|
963 |
+
|
964 |
+
col1, col2 = st.columns([2, 1])
|
965 |
+
|
966 |
+
with col1:
|
967 |
+
st.subheader(f"Job Details: {job_row['Role']}")
|
968 |
+
|
969 |
+
job_details = {
|
970 |
+
"Company": job_row["Company"],
|
971 |
+
"Role": job_row["Role"],
|
972 |
+
"Description": job_row.get("One liner", "N/A"),
|
973 |
+
"Locations": job_row.get("Locations", "N/A"),
|
974 |
+
"Industry": job_row.get("Industry", "N/A"),
|
975 |
+
"Tech Stack": display_tech_stack(job_row_stack)
|
976 |
+
}
|
977 |
+
|
978 |
+
for key, value in job_details.items():
|
979 |
+
st.markdown(f"**{key}:** {value}")
|
980 |
+
|
981 |
+
# Create a key for this job in session state
|
982 |
+
job_key = f"job_{selected_job_index}_processed"
|
983 |
+
|
984 |
+
if job_key not in st.session_state:
|
985 |
+
st.session_state[job_key] = False
|
986 |
+
|
987 |
+
# Add a process button for this job
|
988 |
+
if not st.session_state[job_key]:
|
989 |
+
if st.button(f"Find Matching Candidates for this Job"):
|
990 |
+
if "OPENAI_API_KEY" not in os.environ or not os.environ["OPENAI_API_KEY"]:
|
991 |
+
st.error("Please enter your OpenAI API key in the sidebar before processing")
|
992 |
+
else:
|
993 |
+
# Process candidates for this job (only when requested)
|
994 |
+
selected_candidates = process_candidates_for_job(
|
995 |
+
job_row,
|
996 |
+
candidates_df,
|
997 |
+
st.session_state.llm_chain
|
998 |
+
)
|
999 |
+
|
1000 |
+
# Store the results and set as processed
|
1001 |
+
if 'Selected_Candidates' not in st.session_state:
|
1002 |
+
st.session_state.Selected_Candidates = {}
|
1003 |
+
st.session_state.Selected_Candidates[selected_job_index] = selected_candidates
|
1004 |
+
st.session_state[job_key] = True
|
1005 |
+
|
1006 |
+
# Store the LLM chain for reuse
|
1007 |
+
if st.session_state.llm_chain is None:
|
1008 |
+
st.session_state.llm_chain = setup_llm()
|
1009 |
+
|
1010 |
+
# Force refresh
|
1011 |
+
st.rerun()
|
1012 |
+
|
1013 |
+
# Display selected candidates if already processed
|
1014 |
+
if st.session_state[job_key] and 'Selected_Candidates' in st.session_state:
|
1015 |
+
selected_candidates = st.session_state.Selected_Candidates.get(selected_job_index, [])
|
1016 |
+
|
1017 |
+
# Display selected candidates
|
1018 |
+
st.subheader("Selected Candidates")
|
1019 |
+
|
1020 |
+
# Display token usage statistics (will persist until job is changed)
|
1021 |
+
if 'total_input_tokens' in st.session_state and 'total_output_tokens' in st.session_state:
|
1022 |
+
display_token_usage()
|
1023 |
+
|
1024 |
+
if len(selected_candidates) > 0:
|
1025 |
+
for i, candidate in enumerate(selected_candidates):
|
1026 |
+
with st.expander(f"{i+1}. {candidate['Name']} (Score: {candidate['Fit Score']})"):
|
1027 |
+
col1, col2 = st.columns([3, 1])
|
1028 |
+
|
1029 |
+
with col1:
|
1030 |
+
st.markdown(f"**Summary:** {candidate['summary']}")
|
1031 |
+
st.markdown(f"**Current:** {candidate['Current Title & Company']}")
|
1032 |
+
st.markdown(f"**Education:** {candidate['Educational Background']}")
|
1033 |
+
st.markdown(f"**Experience:** {candidate['Years of Experience']}")
|
1034 |
+
st.markdown(f"**Location:** {candidate['Location']}")
|
1035 |
+
st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**")
|
1036 |
+
|
1037 |
+
with col2:
|
1038 |
+
st.markdown(f"**Fit Score:** {candidate['Fit Score']}")
|
1039 |
+
|
1040 |
+
st.markdown("**Justification:**")
|
1041 |
+
st.info(candidate['justification'])
|
1042 |
+
else:
|
1043 |
+
st.info("No candidates met the minimum score threshold (8.8) for this job.")
|
1044 |
+
|
1045 |
+
# We don't show tech-matched candidates here since they are generated
|
1046 |
+
# during the LLM matching process now
|
1047 |
+
|
1048 |
+
# Add a reset button to start over
|
1049 |
+
if st.button("Reset and Process Again"):
|
1050 |
+
# Don't reset token counters here - we want them to persist
|
1051 |
+
st.session_state[job_key] = False
|
1052 |
+
st.rerun()
|
1053 |
+
|
1054 |
+
if __name__ == "__main__":
|
1055 |
main()
|