import streamlit as st import pandas as pd import json import os from pydantic import BaseModel, Field from typing import List, Set, Dict, Any, Optional # Already have these, but commented for brevity if not all used import time # Added for potential small delays if needed from langchain_openai import ChatOpenAI from langchain_core.messages import HumanMessage # Not directly used in provided snippet from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser # Not directly used in provided snippet from langchain_core.prompts import PromptTemplate # Not directly used in provided snippet import gspread import tempfile from google.oauth2 import service_account import tiktoken st.set_page_config( page_title="Candidate Matching App", page_icon="👨‍💻🎯", layout="wide" ) os.environ["STREAMLIT_HOME"] = tempfile.gettempdir() os.environ["STREAMLIT_DISABLE_TELEMETRY"] = "1" # Define pydantic model for structured output class Shortlist(BaseModel): fit_score: float = Field(description="A score between 0 and 10 indicating how closely the candidate profile matches the job requirements upto 3 decimal points.") candidate_name: str = Field(description="The name of the candidate.") candidate_url: str = Field(description="The URL of the candidate's LinkedIn profile.") candidate_summary: str = Field(description="A brief summary of the candidate's skills and experience along with its educational background.") candidate_location: str = Field(description="The location of the candidate.") justification: str = Field(description="Justification for the shortlisted candidate with the fit score") # Function to calculate tokens def calculate_tokens(text, model="gpt-4o-mini"): try: if "gpt-4" in model: encoding = tiktoken.encoding_for_model("gpt-4o-mini") elif "gpt-3.5" in model: encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") else: encoding = tiktoken.get_encoding("cl100k_base") return len(encoding.encode(text)) except Exception as e: return len(text) // 4 # Function to display token usage def display_token_usage(): if 'total_input_tokens' not in st.session_state: st.session_state.total_input_tokens = 0 if 'total_output_tokens' not in st.session_state: st.session_state.total_output_tokens = 0 total_input = st.session_state.total_input_tokens total_output = st.session_state.total_output_tokens total_tokens = total_input + total_output model_to_check = st.session_state.get('model_name', "gpt-4o-mini") # Use a default if not set if model_to_check == "gpt-4o-mini": input_cost_per_1k = 0.00015 # Adjusted to example rates ($0.15 / 1M tokens) output_cost_per_1k = 0.0006 # Adjusted to example rates ($0.60 / 1M tokens) elif "gpt-4" in model_to_check: # Fallback for other gpt-4 input_cost_per_1k = 0.005 output_cost_per_1k = 0.015 # General gpt-4 pricing can vary else: # Assume gpt-3.5-turbo pricing input_cost_per_1k = 0.0005 # $0.0005 per 1K input tokens output_cost_per_1k = 0.0015 # $0.0015 per 1K output tokens estimated_cost = (total_input / 1000 * input_cost_per_1k) + (total_output / 1000 * output_cost_per_1k) st.subheader("📊 Token Usage Statistics (for last processed job)") col1, col2, col3 = st.columns(3) with col1: st.metric("Input Tokens", f"{total_input:,}") with col2: st.metric("Output Tokens", f"{total_output:,}") with col3: st.metric("Total Tokens", f"{total_tokens:,}") st.markdown(f"**Estimated Cost:** ${estimated_cost:.4f}") return total_tokens # Function to parse and normalize tech stacks def parse_tech_stack(stack): if pd.isna(stack) or stack == "" or stack is None: return set() if isinstance(stack, set): return stack try: if isinstance(stack, str) and stack.startswith("{") and stack.endswith("}"): items = stack.strip("{}").split(",") return set(item.strip().strip("'\"") for item in items if item.strip()) return set(map(lambda x: x.strip().lower(), str(stack).split(','))) except Exception as e: st.error(f"Error parsing tech stack: {e}") return set() def display_tech_stack(stack_set): return ", ".join(sorted(list(stack_set))) if isinstance(stack_set, set) else str(stack_set) def get_matching_candidates(job_stack, candidates_df): matched = [] job_stack_set = parse_tech_stack(job_stack) for _, candidate in candidates_df.iterrows(): candidate_stack = parse_tech_stack(candidate['Key Tech Stack']) common = job_stack_set & candidate_stack if len(common) >= 2: # Original condition matched.append({ "Name": candidate["Full Name"], "URL": candidate["LinkedIn URL"], "Degree & Education": candidate["Degree & University"], "Years of Experience": candidate["Years of Experience"], "Current Title & Company": candidate['Current Title & Company'], "Key Highlights": candidate["Key Highlights"], "Location": candidate["Location (from most recent experience)"], "Experience": str(candidate["Experience"]), "Tech Stack": candidate_stack }) return matched def setup_llm(): """Set up the LangChain LLM with structured output""" # Define the model to use model_name = "gpt-4o-mini" # Store model name in session state for token calculation if 'model_name' not in st.session_state: st.session_state.model_name = model_name # Create LLM instance llm = ChatOpenAI( model=model_name, temperature=0.3, max_tokens=None, timeout=None, max_retries=2, ) # Create structured output sum_llm = llm.with_structured_output(Shortlist) # Create system prompt system = """You are an expert Tech Recruitor, your task is to analyse the Candidate profile and determine if it matches with the job details and provide a score(out of 10) indicating how compatible the the profile is according to job. First of all check the location of the candidate, if the location is not in the range of the job location then reject the candidate directly without any further analysis. for example if the job location is New York and the candidate is in San Francisco then reject the candidate. Similarly for other states as well. Try to ensure following points while estimating the candidate's fit score: For education: Tier1 - MIT, Stanford, CMU, UC Berkeley, Caltech, Harvard, IIT Bombay, IIT Delhi, Princeton, UIUC, University of Washington, Columbia, University of Chicago, Cornell, University of Michigan (Ann Arbor), UT Austin - Maximum points Tier2 - UC Davis, Georgia Tech, Purdue, UMass Amherst,etc - Moderate points Tier3 - Unknown or unranked institutions - Lower points or reject Startup Experience Requirement: Candidates must have worked as a direct employee at a VC-backed startup (Seed to series C/D) preferred - Y Combinator, Sequoia,a16z,Accel,Founders Fund,LightSpeed,Greylock,Benchmark,Index Ventures,etc. The fit score signifies based on following metrics: 1–5 - Poor Fit - Auto-reject 6–7 - Weak Fit - Auto-reject 8.0–8.7 - Moderate Fit - Auto-reject 8.8–10 - STRONG Fit - Include in results Each candidate's fit score should be calculated based on a weighted evaluation of their background and must be distinct even if candidates have similar profiles. """ # Create query prompt query_prompt = ChatPromptTemplate.from_messages([ ("system", system), ("human", """ You are an expert Recruitor. Your task is to determine if the candidate matches the given job. Provide the score as a `float` rounded to exactly **three decimal places** (e.g., 8.943, 9.211, etc.). Avoid rounding to whole or one-decimal numbers. Every candidate should have a **unique** fit score. For this you will be provided with the follwing inputs of job and candidates: Job Details Company: {Company} Role: {Role} About Company: {desc} Locations: {Locations} Tech Stack: {Tech_Stack} Industry: {Industry} Candidate Details: Full Name: {Full_Name} LinkedIn URL: {LinkedIn_URL} Current Title & Company: {Current_Title_Company} Years of Experience: {Years_of_Experience} Degree & University: {Degree_University} Key Tech Stack: {Key_Tech_Stack} Key Highlights: {Key_Highlights} Location (from most recent experience): {cand_Location} Past_Experience: {Experience} Answer in the structured manner as per the schema. If any parameter is Unknown try not to include in the summary, only include those parameters which are known. The `fit_score` must be a float with **exactly three decimal digits** (e.g. 8.812, 9.006). Do not round to 1 or 2 decimals. """), ]) # Chain the prompt and LLM cat_class = query_prompt | sum_llm return cat_class def call_llm(candidate_data, job_data, llm_chain): try: job_tech_stack = ", ".join(sorted(list(job_data.get("Tech_Stack", set())))) if isinstance(job_data.get("Tech_Stack"), set) else job_data.get("Tech_Stack", "") candidate_tech_stack = ", ".join(sorted(list(candidate_data.get("Tech Stack", set())))) if isinstance(candidate_data.get("Tech Stack"), set) else candidate_data.get("Tech Stack", "") payload = { "Company": job_data.get("Company", ""), "Role": job_data.get("Role", ""), "desc": job_data.get("desc", ""), "Locations": job_data.get("Locations", ""), "Tech_Stack": job_tech_stack, "Industry": job_data.get("Industry", ""), "Full_Name": candidate_data.get("Name", ""), "LinkedIn_URL": candidate_data.get("URL", ""), "Current_Title_Company": candidate_data.get("Current Title & Company", ""), "Years_of_Experience": candidate_data.get("Years of Experience", ""), "Degree_University": candidate_data.get("Degree & Education", ""), "Key_Tech_Stack": candidate_tech_stack, "Key_Highlights": candidate_data.get("Key Highlights", ""), "cand_Location": candidate_data.get("Location", ""), "Experience": candidate_data.get("Experience", "") } payload_str = json.dumps(payload) input_tokens = calculate_tokens(payload_str, st.session_state.model_name) response = llm_chain.invoke(payload) # print(candidate_data.get("Experience", "")) # Kept for your debugging if needed response_str = f"candidate_name: {response.candidate_name} ... fit_score: {float(f'{response.fit_score:.3f}')} ..." # Truncated output_tokens = calculate_tokens(response_str, st.session_state.model_name) if 'total_input_tokens' not in st.session_state: st.session_state.total_input_tokens = 0 if 'total_output_tokens' not in st.session_state: st.session_state.total_output_tokens = 0 st.session_state.total_input_tokens += input_tokens st.session_state.total_output_tokens += output_tokens return { "candidate_name": response.candidate_name, "candidate_url": response.candidate_url, "candidate_summary": response.candidate_summary, "candidate_location": response.candidate_location, "fit_score": response.fit_score, "justification": response.justification } except Exception as e: st.error(f"Error calling LLM for {candidate_data.get('Name', 'Unknown')}: {e}") return { "candidate_name": candidate_data.get("Name", "Unknown"), "candidate_url": candidate_data.get("URL", ""), "candidate_summary": "Error processing candidate profile", "candidate_location": candidate_data.get("Location", "Unknown"), "fit_score": 0.0, "justification": f"Error in LLM processing: {str(e)}" } def process_candidates_for_job(job_row, candidates_df, llm_chain=None): st.session_state.total_input_tokens = 0 # Reset for this job st.session_state.total_output_tokens = 0 if llm_chain is None: with st.spinner("Setting up LLM..."): llm_chain = setup_llm() selected_candidates = [] job_data = { "Company": job_row["Company"], "Role": job_row["Role"], "desc": job_row.get("One liner", ""), "Locations": job_row.get("Locations", ""), "Tech_Stack": job_row["Tech Stack"], "Industry": job_row.get("Industry", "") } with st.spinner("Sourcing candidates based on tech stack..."): matching_candidates = get_matching_candidates(job_row["Tech Stack"], candidates_df) if not matching_candidates: st.warning("No candidates with matching tech stack found for this job.") return [] st.success(f"Found {len(matching_candidates)} candidates with matching tech stack. Evaluating with LLM...") candidates_progress = st.progress(0) candidate_status = st.empty() # For live updates for i, candidate_data in enumerate(matching_candidates): # *** MODIFICATION: Check for stop flag *** if st.session_state.get('stop_processing_flag', False): candidate_status.warning("Processing stopped by user.") time.sleep(1) # Allow message to be seen break candidate_status.text(f"Evaluating candidate {i+1}/{len(matching_candidates)}: {candidate_data.get('Name', 'Unknown')}") response = call_llm(candidate_data, job_data, llm_chain) response_dict = { "Name": response["candidate_name"], "LinkedIn": response["candidate_url"], "summary": response["candidate_summary"], "Location": response["candidate_location"], "Fit Score": float(f"{response['fit_score']:.3f}"), "justification": response["justification"], "Educational Background": candidate_data.get("Degree & Education", ""), "Years of Experience": candidate_data.get("Years of Experience", ""), "Current Title & Company": candidate_data.get("Current Title & Company", "") } # *** MODIFICATION: Live output of candidate dicts - will disappear on rerun after processing *** if response["fit_score"] >= 8.800: selected_candidates.append(response_dict) # This st.markdown will be visible during processing and cleared on the next full script rerun # after this processing block finishes or is stopped. st.markdown( f"**Selected Candidate:** [{response_dict['Name']}]({response_dict['LinkedIn']}) " f"(Score: {response_dict['Fit Score']:.3f}, Location: {response_dict['Location']})" ) else: # This st.write will also be visible during processing and cleared later. st.write(f"Rejected candidate: {response_dict['Name']} with score: {response_dict['Fit Score']:.3f}, Location: {response_dict['Location']})") candidates_progress.progress((i + 1) / len(matching_candidates)) candidates_progress.empty() candidate_status.empty() if not st.session_state.get('stop_processing_flag', False): # Only show if not stopped if selected_candidates: st.success(f"✅ LLM evaluation complete. Found {len(selected_candidates)} suitable candidates for this job!") else: st.info("LLM evaluation complete. No candidates met the minimum fit score threshold for this job.") return selected_candidates def main(): st.title("👨‍💻 Candidate Matching App") if 'processed_jobs' not in st.session_state: st.session_state.processed_jobs = {} # May not be used with new logic if 'Selected_Candidates' not in st.session_state: st.session_state.Selected_Candidates = {} if 'llm_chain' not in st.session_state: st.session_state.llm_chain = None # Initialize to None # *** MODIFICATION: Initialize stop flag *** if 'stop_processing_flag' not in st.session_state: st.session_state.stop_processing_flag = False st.write("This app matches job listings with candidate profiles...") with st.sidebar: st.header("API Configuration") api_key = st.text_input("Enter OpenAI API Key", type="password", key="api_key_input") if api_key: os.environ["OPENAI_API_KEY"] = api_key # Initialize LLM chain once API key is set if st.session_state.llm_chain is None: with st.spinner("Setting up LLM..."): st.session_state.llm_chain = setup_llm() st.success("API Key set") else: st.warning("Please enter OpenAI API Key to use LLM features") st.session_state.llm_chain = None # Clear chain if key removed # ... (rest of your gspread setup) ... try: SERVICE_ACCOUNT_FILE = 'src/synapse-recruitment-e94255ca76fd.json' # Ensure this path is correct SCOPES = ['https://www.googleapis.com/auth/spreadsheets'] creds = service_account.Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES) gc = gspread.authorize(creds) job_sheet = gc.open_by_key('1BZlvbtFyiQ9Pgr_lpepDJua1ZeVEqrCLjssNd6OiG9k') candidates_sheet = gc.open_by_key('1u_9o5f0MPHFUSScjEcnA8Lojm4Y9m9LuWhvjYm6ytF4') except Exception as e: st.error(f"Failed to connect to Google Sheets. Ensure '{SERVICE_ACCOUNT_FILE}' is valid and has permissions. Error: {e}") st.stop() if not os.environ.get("OPENAI_API_KEY"): st.warning("⚠️ You need to provide an OpenAI API key in the sidebar to use this app.") st.stop() if st.session_state.llm_chain is None and os.environ.get("OPENAI_API_KEY"): with st.spinner("Setting up LLM..."): st.session_state.llm_chain = setup_llm() st.rerun() # Rerun to ensure LLM is ready for the main display logic try: job_worksheet = job_sheet.worksheet('paraform_jobs_formatted') job_data = job_worksheet.get_all_values() candidate_worksheet = candidates_sheet.worksheet('transformed_candidates_updated') candidate_data = candidate_worksheet.get_all_values() jobs_df = pd.DataFrame(job_data[1:], columns=job_data[0]).drop(["Link"], axis=1, errors='ignore') jobs_df1 = jobs_df[["Company","Role","One liner","Locations","Tech Stack","Workplace","Industry","YOE"]] candidates_df = pd.DataFrame(candidate_data[1:], columns=candidate_data[0]).fillna("Unknown") candidates_df.drop_duplicates(subset=['LinkedIn URL'], keep='first', inplace=True) with st.expander("Preview uploaded data"): st.subheader("Jobs Data Preview"); st.dataframe(jobs_df1.head(3)) # st.subheader("Candidates Data Preview"); st.dataframe(candidates_df.head(3)) # Column mapping (simplified, ensure your CSVs have these exact names or adjust) # candidates_df = candidates_df.rename(columns={...}) # Add if needed display_job_selection(jobs_df, candidates_df, job_sheet) # job_sheet is 'sh' except Exception as e: st.error(f"Error processing files or data: {e}") st.divider() def display_job_selection(jobs_df, candidates_df, sh): # 'sh' is the Google Sheets client st.subheader("Select a job to Source for potential matches") job_options = [f"{row['Role']} at {row['Company']}" for _, row in jobs_df.iterrows()] if not job_options: st.warning("No jobs found to display.") return selected_job_index = st.selectbox("Jobs:", range(len(job_options)), format_func=lambda x: job_options[x], key="job_selectbox") job_row = jobs_df.iloc[selected_job_index] job_row_stack = parse_tech_stack(job_row["Tech Stack"]) # Assuming parse_tech_stack is defined col_job_details_display, _ = st.columns([2,1]) with col_job_details_display: st.subheader(f"Job Details: {job_row['Role']}") job_details_dict = { "Company": job_row["Company"], "Role": job_row["Role"], "Description": job_row.get("One liner", "N/A"), "Locations": job_row.get("Locations", "N/A"), "Industry": job_row.get("Industry", "N/A"), "Tech Stack": display_tech_stack(job_row_stack) # Assuming display_tech_stack is defined } for key, value in job_details_dict.items(): st.markdown(f"**{key}:** {value}") # State keys for the selected job job_processed_key = f"job_{selected_job_index}_processed_successfully" job_is_processing_key = f"job_{selected_job_index}_is_currently_processing" # Initialize states if they don't exist for this job if job_processed_key not in st.session_state: st.session_state[job_processed_key] = False if job_is_processing_key not in st.session_state: st.session_state[job_is_processing_key] = False sheet_name = f"{job_row['Role']} at {job_row['Company']}".strip()[:100] worksheet_exists = False existing_candidates_from_sheet = [] # This will store raw data from sheet try: cand_worksheet = sh.worksheet(sheet_name) worksheet_exists = True existing_data = cand_worksheet.get_all_values() # Get all values as list of lists if len(existing_data) > 1: # Has data beyond header existing_candidates_from_sheet = existing_data # Store raw data except gspread.exceptions.WorksheetNotFound: pass # --- Processing Control Area --- # Show controls if not successfully processed in this session OR if sheet exists (allow re-process/overwrite) if not st.session_state.get(job_processed_key, False) or existing_candidates_from_sheet: if existing_candidates_from_sheet and not st.session_state.get(job_is_processing_key, False) and not st.session_state.get(job_processed_key, False): st.info(f"Processing ('{sheet_name}')") col_find, col_stop = st.columns(2) with col_find: if st.button(f"Find Matching Candidates for this Job", key=f"find_btn_{selected_job_index}", disabled=st.session_state.get(job_is_processing_key, False)): if not os.environ.get("OPENAI_API_KEY") or st.session_state.llm_chain is None: # Assuming llm_chain is in session_state st.error("OpenAI API key not set or LLM not initialized. Please check sidebar.") else: st.session_state[job_is_processing_key] = True st.session_state.stop_processing_flag = False # Reset for new run, assuming stop_processing_flag is used st.session_state.Selected_Candidates[selected_job_index] = [] # Clear previous run for this job st.session_state[job_processed_key] = False # Mark as not successfully processed yet for this attempt st.rerun() with col_stop: if st.session_state.get(job_is_processing_key, False): # Show STOP only if "Find" was clicked and currently processing if st.button("STOP Processing", key=f"stop_btn_{selected_job_index}"): st.session_state.stop_processing_flag = True # Assuming stop_processing_flag is used st.warning("Stop request sent. Processing will halt shortly.") # --- Actual Processing Logic --- if st.session_state.get(job_is_processing_key, False): with st.spinner(f"Sourcing candidates for {job_row['Role']} at {job_row['Company']}..."): # Assuming process_candidates_for_job is defined and handles stop_processing_flag processed_candidates_list = process_candidates_for_job( job_row, candidates_df, st.session_state.llm_chain # Assuming llm_chain from session_state ) st.session_state[job_is_processing_key] = False # Mark as no longer actively processing if not st.session_state.get('stop_processing_flag', False): # If processing was NOT stopped if processed_candidates_list: # Ensure Fit Score is float for reliable sorting for cand in processed_candidates_list: if 'Fit Score' in cand and isinstance(cand['Fit Score'], str): try: cand['Fit Score'] = float(cand['Fit Score']) except ValueError: cand['Fit Score'] = 0.0 # Default if conversion fails elif 'Fit Score' not in cand: cand['Fit Score'] = 0.0 processed_candidates_list.sort(key=lambda x: x.get("Fit Score", 0.0), reverse=True) st.session_state.Selected_Candidates[selected_job_index] = processed_candidates_list st.session_state[job_processed_key] = True # Mark as successfully processed # Save to Google Sheet try: target_worksheet = None if not worksheet_exists: target_worksheet = sh.add_worksheet(title=sheet_name, rows=max(100, len(processed_candidates_list) + 10), cols=20) else: target_worksheet = sh.worksheet(sheet_name) headers = list(processed_candidates_list[0].keys()) # Ensure all values are converted to strings for gspread rows_to_write = [headers] + [[str(candidate.get(h, "")) for h in headers] for candidate in processed_candidates_list] target_worksheet.clear() target_worksheet.update('A1', rows_to_write) st.success(f"Results saved to Google Sheet: '{sheet_name}'") except Exception as e: st.error(f"Error writing to Google Sheet '{sheet_name}': {e}") else: st.info("No suitable candidates found after processing.") st.session_state.Selected_Candidates[selected_job_index] = [] st.session_state[job_processed_key] = True # Mark as processed, even if no results else: # If processing WAS stopped st.info("Processing was stopped by user. Results (if any) were not saved. You can try processing again.") st.session_state.Selected_Candidates[selected_job_index] = [] # Clear any partial results st.session_state[job_processed_key] = False # Not successfully processed st.session_state.pop('stop_processing_flag', None) # Clean up flag st.rerun() # Rerun to update UI based on new state # --- Display Results Area --- should_display_results_area = False final_candidates_to_display = [] # Initialize to ensure it's always defined if st.session_state.get(job_is_processing_key, False): should_display_results_area = False # Not if actively processing elif st.session_state.get(job_processed_key, False): # If successfully processed in this session should_display_results_area = True final_candidates_to_display = st.session_state.Selected_Candidates.get(selected_job_index, []) elif existing_candidates_from_sheet: # If not processed in this session, but sheet has data should_display_results_area = True headers = existing_candidates_from_sheet[0] parsed_sheet_candidates = [] for row_idx, row_data in enumerate(existing_candidates_from_sheet[1:]): # Skip header row candidate_dict = {} for col_idx, header_name in enumerate(headers): candidate_dict[header_name] = row_data[col_idx] if col_idx < len(row_data) else None # Convert Fit Score from string to float for consistent handling if 'Fit Score' in candidate_dict and isinstance(candidate_dict['Fit Score'], str): try: candidate_dict['Fit Score'] = float(candidate_dict['Fit Score']) except ValueError: st.warning(f"Could not convert Fit Score '{candidate_dict['Fit Score']}' to float for candidate in sheet row {row_idx+2}.") candidate_dict['Fit Score'] = 0.0 # Default if conversion fails elif 'Fit Score' not in candidate_dict: candidate_dict['Fit Score'] = 0.0 parsed_sheet_candidates.append(candidate_dict) final_candidates_to_display = sorted(parsed_sheet_candidates, key=lambda x: x.get("Fit Score", 0.0), reverse=True) if not st.session_state.get(job_processed_key, False): # Inform if loading from sheet and not explicitly processed st.info(f"Displaying: '{sheet_name}'.") if should_display_results_area: st.subheader("Selected Candidates") # Display token usage if it was just processed (job_processed_key is True and tokens exist) if st.session_state.get(job_processed_key, False) and \ (st.session_state.get('total_input_tokens', 0) > 0 or st.session_state.get('total_output_tokens', 0) > 0): display_token_usage() # Assuming display_token_usage is defined if final_candidates_to_display: for i, candidate in enumerate(final_candidates_to_display): score_display = candidate.get('Fit Score', 'N/A') if isinstance(score_display, (float, int)): score_display = f"{score_display:.3f}" # If score_display is still a string (e.g. 'N/A' or failed float conversion), it will be displayed as is. expander_title = f"{i+1}. {candidate.get('Name', 'N/A')} (Score: {score_display})" with st.expander(expander_title): text_to_copy = f"""Candidate: {candidate.get('Name', 'N/A')} (Score: {score_display}) Summary: {candidate.get('summary', 'N/A')} Current: {candidate.get('Current Title & Company', 'N/A')} Education: {candidate.get('Educational Background', 'N/A')} Experience: {candidate.get('Years of Experience', 'N/A')} Location: {candidate.get('Location', 'N/A')} LinkedIn: {candidate.get('LinkedIn', 'N/A')} Justification: {candidate.get('justification', 'N/A')} """ js_text_to_copy = json.dumps(text_to_copy) button_unique_id = f"copy_btn_job{selected_job_index}_cand{i}" copy_button_html = f""" """ expander_cols = st.columns([0.82, 0.18]) with expander_cols[1]: st.components.v1.html(copy_button_html, height=40) with expander_cols[0]: st.markdown(f"**Summary:** {candidate.get('summary', 'N/A')}") st.markdown(f"**Current:** {candidate.get('Current Title & Company', 'N/A')}") st.markdown(f"**Education:** {candidate.get('Educational Background', 'N/A')}") st.markdown(f"**Experience:** {candidate.get('Years of Experience', 'N/A')}") st.markdown(f"**Location:** {candidate.get('Location', 'N/A')}") if 'LinkedIn' in candidate and candidate.get('LinkedIn'): st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**") else: st.markdown("**LinkedIn Profile:** N/A") if 'justification' in candidate and candidate.get('justification'): st.markdown("**Justification:**") st.info(candidate['justification']) elif st.session_state.get(job_processed_key, False): # Processed but no candidates st.info("No candidates met the criteria for this job after processing.") # This "Reset" button is now governed by should_display_results_area if st.button("Reset and Process Again", key=f"reset_btn_{selected_job_index}"): st.session_state[job_processed_key] = False st.session_state.pop(job_is_processing_key, None) if selected_job_index in st.session_state.Selected_Candidates: del st.session_state.Selected_Candidates[selected_job_index] try: sh.worksheet(sheet_name).clear() st.info(f"Cleared Google Sheet '{sheet_name}' as part of reset.") except: pass # Ignore if sheet not found or error st.rerun() if __name__ == "__main__": main()