import streamlit as st import pandas as pd import json import os from pydantic import BaseModel, Field from typing import List, Set, Dict, Any, Optional # Already have these, but commented for brevity if not all used import time # Added for potential small delays if needed from langchain_openai import ChatOpenAI from langchain_core.messages import HumanMessage # Not directly used in provided snippet from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser # Not directly used in provided snippet from langchain_core.prompts import PromptTemplate # Not directly used in provided snippet import gspread import tempfile import time from google.oauth2 import service_account import tiktoken st.set_page_config( page_title="Candidate Matching App", page_icon="👨‍💻🎯", layout="wide" ) os.environ["STREAMLIT_HOME"] = tempfile.gettempdir() os.environ["STREAMLIT_DISABLE_TELEMETRY"] = "1" # Define pydantic model for structured output class Shortlist(BaseModel): fit_score: float = Field(description="A score between 0 and 10 indicating how closely the candidate profile matches the job requirements upto 3 decimal points.") candidate_name: str = Field(description="The name of the candidate.") candidate_url: str = Field(description="The URL of the candidate's LinkedIn profile.") candidate_summary: str = Field(description="A brief summary of the candidate's skills and experience along with its educational background.") candidate_location: str = Field(description="The location of the candidate.") justification: str = Field(description="Justification for the shortlisted candidate with the fit score") # Function to calculate tokens def calculate_tokens(text, model="gpt-4o-mini"): try: if "gpt-4" in model: encoding = tiktoken.encoding_for_model("gpt-4o-mini") elif "gpt-3.5" in model: encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") else: encoding = tiktoken.get_encoding("cl100k_base") return len(encoding.encode(text)) except Exception as e: return len(text) // 4 # Function to display token usage def display_token_usage(): if 'total_input_tokens' not in st.session_state: st.session_state.total_input_tokens = 0 if 'total_output_tokens' not in st.session_state: st.session_state.total_output_tokens = 0 total_input = st.session_state.total_input_tokens total_output = st.session_state.total_output_tokens total_tokens = total_input + total_output model_to_check = st.session_state.get('model_name', "gpt-4o-mini") # Use a default if not set if model_to_check == "gpt-4o-mini": input_cost_per_1k = 0.00015 # Adjusted to example rates ($0.15 / 1M tokens) output_cost_per_1k = 0.0006 # Adjusted to example rates ($0.60 / 1M tokens) elif "gpt-4" in model_to_check: # Fallback for other gpt-4 input_cost_per_1k = 0.005 output_cost_per_1k = 0.015 # General gpt-4 pricing can vary else: # Assume gpt-3.5-turbo pricing input_cost_per_1k = 0.0005 # $0.0005 per 1K input tokens output_cost_per_1k = 0.0015 # $0.0015 per 1K output tokens estimated_cost = (total_input / 1000 * input_cost_per_1k) + (total_output / 1000 * output_cost_per_1k) st.subheader("📊 Token Usage Statistics (for last processed job)") col1, col2, col3 = st.columns(3) with col1: st.metric("Input Tokens", f"{total_input:,}") with col2: st.metric("Output Tokens", f"{total_output:,}") with col3: st.metric("Total Tokens", f"{total_tokens:,}") st.markdown(f"**Estimated Cost:** ${estimated_cost:.4f}") return total_tokens # Function to parse and normalize tech stacks def parse_tech_stack(stack): if pd.isna(stack) or stack == "" or stack is None: return set() if isinstance(stack, set): return stack try: if isinstance(stack, str) and stack.startswith("{") and stack.endswith("}"): items = stack.strip("{}").split(",") return set(item.strip().strip("'\"") for item in items if item.strip()) return set(map(lambda x: x.strip().lower(), str(stack).split(','))) except Exception as e: st.error(f"Error parsing tech stack: {e}") return set() def display_tech_stack(stack_set): return ", ".join(sorted(list(stack_set))) if isinstance(stack_set, set) else str(stack_set) def get_matching_candidates(job_stack, candidates_df): matched = [] job_stack_set = parse_tech_stack(job_stack) for _, candidate in candidates_df.iterrows(): candidate_stack = parse_tech_stack(candidate['Key Tech Stack']) common = job_stack_set & candidate_stack if len(common) >= 2: # Original condition matched.append({ "Name": candidate["Full Name"], "URL": candidate["LinkedIn URL"], "Degree & Education": candidate["Degree & University"], "Years of Experience": candidate["Years of Experience"], "Current Title & Company": candidate['Current Title & Company'], "Key Highlights": candidate["Key Highlights"], "Location": candidate["Location (from most recent experience)"], "Experience": str(candidate["Experience"]), "Tech Stack": candidate_stack }) return matched def setup_llm(): """Set up the LangChain LLM with structured output""" # Define the model to use model_name = "gpt-4o-mini" # Store model name in session state for token calculation if 'model_name' not in st.session_state: st.session_state.model_name = model_name # Create LLM instance llm = ChatOpenAI( model=model_name, temperature=0.3, max_tokens=None, timeout=None, max_retries=2, ) # Create structured output sum_llm = llm.with_structured_output(Shortlist) # Create system prompt system = """You are an expert Tech Recruiter. For each candidate–job pair, follow these steps and show your chain of thought before giving a final Fit Score (0–10): 1. LOCATION CHECK (Hard Disqualification) - If candidate’s location lies outside the job’s required location, immediately reject (Score 1–5) with reasoning “Location mismatch.” 2. HARD DISQUALIFICATIONS (Auto-reject, Score 1–5) - No VC-backed startup experience (Seed–Series C/D) - Only Big Tech or corporate labs, with no startup follow-on - < 3 years post-graduate SWE experience - More than one role < 2 years (unless due to M&A or shutdown) - Career centered on enterprise/consulting firms (e.g., Infosys, Wipro, Cognizant, Tata, Capgemini, Dell, Cisco) - Visa dependency (H1B/OPT/TN) unless explicitly allowed 3. EDUCATION & STARTUP EXPERIENCE SCORING - **Tier 1 (Max points):** MIT, Stanford, CMU, UC Berkeley, Caltech, Harvard, IIT Bombay, IIT Delhi, Princeton, UIUC, UW, Columbia, UChicago, Cornell, UM-Ann Arbor, UT Austin, Waterloo, U Toronto - **Tier 2 (Moderate points):** UC Davis, Georgia Tech, Purdue, UMass Amherst, etc. - **Tier 3 (Low points):** Other or unranked institutions - Assume CS degree for all; use university field to assign tier - Validate startup’s funding stage via Crunchbase/Pitchbook; preferred investors include YC, Sequoia, a16z, Accel, Founders Fund, Lightspeed, Greylock, Benchmark, Index Ventures 4. WEIGHTED FIT SCORE COMPONENTS (Qualified candidates only) - Engineering & Problem Solving: 20% - Product Experience (built systems end-to-end): 20% - Startup Experience (time at VC-backed roles): 20% - Tech Stack Alignment: 15% - Tenure & Stability (≥ 2 years per role): 15% - Domain Relevance (industry match): 10% : 5. ADJACENT COMPANY MATCHING - If startup funding can’t be verified, suggest similar-stage companies in the same market and justify **Output:** - **Chain of Thought:** bullet points for each step above - **Final Fit Score:** X.X/10 and classification - 1–5: Poor Fit (Auto-reject) - 6–7: Weak Fit (Auto-reject) - 8.0–8.7: Moderate Fit (Auto-reject) - 8.8–10: Strong Fit (Include in results) """ # Create query prompt query_prompt = ChatPromptTemplate.from_messages([ ("system", system), ("human", """ You are an expert Recruitor. Your task is to determine if the candidate matches the given job. Provide the score as a `float` rounded to exactly **three decimal places** (e.g., 8.943, 9.211, etc.). Avoid rounding to whole or one-decimal numbers. Every candidate should have a **unique** fit score. For this you will be provided with the follwing inputs of job and candidates: Job Details Company: {Company} Role: {Role} About Company: {desc} Locations: {Locations} Tech Stack: {Tech_Stack} Industry: {Industry} Candidate Details: Full Name: {Full_Name} LinkedIn URL: {LinkedIn_URL} Current Title & Company: {Current_Title_Company} Years of Experience: {Years_of_Experience} Degree & University: {Degree_University} Key Tech Stack: {Key_Tech_Stack} Key Highlights: {Key_Highlights} Location (from most recent experience): {cand_Location} Past_Experience: {Experience} Answer in the structured manner as per the schema. If any parameter is Unknown try not to include in the summary, only include those parameters which are known. The `fit_score` must be a float with **exactly three decimal digits** (e.g. 8.812, 9.006). Do not round to 1 or 2 decimals. """), ]) # Chain the prompt and LLM cat_class = query_prompt | sum_llm return cat_class def call_llm(candidate_data, job_data, llm_chain): try: job_tech_stack = ", ".join(sorted(list(job_data.get("Tech_Stack", set())))) if isinstance(job_data.get("Tech_Stack"), set) else job_data.get("Tech_Stack", "") candidate_tech_stack = ", ".join(sorted(list(candidate_data.get("Tech Stack", set())))) if isinstance(candidate_data.get("Tech Stack"), set) else candidate_data.get("Tech Stack", "") payload = { "Company": job_data.get("Company", ""), "Role": job_data.get("Role", ""), "desc": job_data.get("desc", ""), "Locations": job_data.get("Locations", ""), "Tech_Stack": job_tech_stack, "Industry": job_data.get("Industry", ""), "Full_Name": candidate_data.get("Name", ""), "LinkedIn_URL": candidate_data.get("URL", ""), "Current_Title_Company": candidate_data.get("Current Title & Company", ""), "Years_of_Experience": candidate_data.get("Years of Experience", ""), "Degree_University": candidate_data.get("Degree & Education", ""), "Key_Tech_Stack": candidate_tech_stack, "Key_Highlights": candidate_data.get("Key Highlights", ""), "cand_Location": candidate_data.get("Location", ""), "Experience": candidate_data.get("Experience", "") } payload_str = json.dumps(payload) input_tokens = calculate_tokens(payload_str, st.session_state.model_name) response = llm_chain.invoke(payload) # print(candidate_data.get("Experience", "")) # Kept for your debugging if needed response_str = f"candidate_name: {response.candidate_name} URL:{response.candidate_url} summ:{response.candidate_summary} loc: {response.candidate_location} just {response.justification} fit_score: {float(f'{response.fit_score:.3f}')}." # Truncated output_tokens = calculate_tokens(response_str, st.session_state.model_name) if 'total_input_tokens' not in st.session_state: st.session_state.total_input_tokens = 0 if 'total_output_tokens' not in st.session_state: st.session_state.total_output_tokens = 0 st.session_state.total_input_tokens += input_tokens st.session_state.total_output_tokens += output_tokens return { "candidate_name": response.candidate_name, "candidate_url": response.candidate_url, "candidate_summary": response.candidate_summary, "candidate_location": response.candidate_location, "fit_score": response.fit_score, "justification": response.justification } except Exception as e: st.error(f"Error calling LLM for {candidate_data.get('Name', 'Unknown')}: {e}") return { "candidate_name": candidate_data.get("Name", "Unknown"), "candidate_url": candidate_data.get("URL", ""), "candidate_summary": "Error processing candidate profile", "candidate_location": candidate_data.get("Location", "Unknown"), "fit_score": 0.0, "justification": f"Error in LLM processing: {str(e)}" } def process_candidates_for_job(job_row, candidates_df, llm_chain=None): st.session_state.total_input_tokens = 0 # Reset for this job st.session_state.total_output_tokens = 0 if llm_chain is None: with st.spinner("Setting up LLM..."): llm_chain = setup_llm() selected_candidates = [] job_data = { "Company": job_row["Company"], "Role": job_row["Role"], "desc": job_row.get("One liner", ""), "Locations": job_row.get("Locations", ""), "Tech_Stack": job_row["Tech Stack"], "Industry": job_row.get("Industry", "") } with st.spinner("Finding matching candidates based on tech stack..."): matching_candidates = get_matching_candidates(job_row["Tech Stack"], candidates_df) if not matching_candidates: st.warning("No candidates with matching tech stack found for this job.") return [] st.success(f"Found {len(matching_candidates)} candidates with matching tech stack. Evaluating with LLM...") candidates_progress = st.progress(0) candidate_status = st.empty() # For live updates for i, candidate_data in enumerate(matching_candidates): # *** MODIFICATION: Check for stop flag *** if st.session_state.get('stop_processing_flag', False): candidate_status.warning("Processing stopped by user.") time.sleep(1) # Allow message to be seen break candidate_status.text(f"Evaluating candidate {i+1}/{len(matching_candidates)}: {candidate_data.get('Name', 'Unknown')}") response = call_llm(candidate_data, job_data, llm_chain) response_dict = { "Name": response["candidate_name"], "LinkedIn": response["candidate_url"], "summary": response["candidate_summary"], "Location": response["candidate_location"], "Fit Score": float(f"{response['fit_score']:.3f}"), "justification": response["justification"], "Educational Background": candidate_data.get("Degree & Education", ""), "Years of Experience": candidate_data.get("Years of Experience", ""), "Current Title & Company": candidate_data.get("Current Title & Company", "") } # *** MODIFICATION: Live output of candidate dicts - will disappear on rerun after processing *** if response["fit_score"] >= 8.800: selected_candidates.append(response_dict) # This st.markdown will be visible during processing and cleared on the next full script rerun # after this processing block finishes or is stopped. st.markdown( f"**Selected Candidate:** [{response_dict['Name']}]({response_dict['LinkedIn']}) " f"(Score: {response_dict['Fit Score']:.3f}, Location: {response_dict['Location']})" ) candidates_progress.progress((i + 1) / len(matching_candidates)) candidates_progress.empty() candidate_status.empty() if not st.session_state.get('stop_processing_flag', False): # Only show if not stopped if selected_candidates: st.success(f"✅ LLM evaluation complete. Found {len(selected_candidates)} suitable candidates for this job!") else: st.info("LLM evaluation complete. No candidates met the minimum fit score threshold for this job.") return selected_candidates def main(): st.title("👨‍💻 Candidate Matching App") if 'processed_jobs' not in st.session_state: st.session_state.processed_jobs = {} # May not be used with new logic if 'Selected_Candidates' not in st.session_state: st.session_state.Selected_Candidates = {} if 'llm_chain' not in st.session_state: st.session_state.llm_chain = None # Initialize to None # *** MODIFICATION: Initialize stop flag *** if 'stop_processing_flag' not in st.session_state: st.session_state.stop_processing_flag = False st.write("This app matches job listings with candidate profiles...") with st.sidebar: st.header("API Configuration") api_key = st.text_input("Enter OpenAI API Key", type="password", key="api_key_input") if api_key: os.environ["OPENAI_API_KEY"] = api_key SERVICE_ACCOUNT_FILE = 'src/synapse-recruitment-e94255ca76fd.json' # Ensure this path is correct SCOPES = ['https://www.googleapis.com/auth/spreadsheets'] creds = service_account.Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES) # Initialize LLM chain once API key is set if st.session_state.llm_chain is None: with st.spinner("Setting up LLM..."): st.session_state.llm_chain = setup_llm() st.success("API Key set") else: st.warning("Please enter OpenAI API Key to use LLM features") st.session_state.llm_chain = None # Clear chain if key removed try: gc = gspread.authorize(creds) job_sheet = gc.open_by_key('1BZlvbtFyiQ9Pgr_lpepDJua1ZeVEqrCLjssNd6OiG9k') candidates_sheet = gc.open_by_key('1u_9o5f0MPHFUSScjEcnA8Lojm4Y9m9LuWhvjYm6ytF4') except Exception as e: st.error(f"Failed to connect to Google Sheets. Please Ensure the API key is correct") st.stop() if not os.environ.get("OPENAI_API_KEY"): st.warning("⚠️ You need to provide an OpenAI API key in the sidebar to use this app.") st.stop() if st.session_state.llm_chain is None and os.environ.get("OPENAI_API_KEY"): with st.spinner("Setting up LLM..."): st.session_state.llm_chain = setup_llm() st.rerun() # Rerun to ensure LLM is ready for the main display logic try: job_worksheet = job_sheet.worksheet('paraform_jobs_formatted') job_data = job_worksheet.get_all_values() candidate_worksheet = candidates_sheet.worksheet('transformed_candidates_updated') candidate_data = candidate_worksheet.get_all_values() jobs_df = pd.DataFrame(job_data[1:], columns=job_data[0]).drop(["Link"], axis=1, errors='ignore') jobs_df1 = jobs_df[["Company","Role","One liner","Locations","Tech Stack","Workplace","Industry","YOE"]] jobs_df1 = jobs_df1.fillna("Unknown") candidates_df = pd.DataFrame(candidate_data[1:], columns=candidate_data[0]).fillna("Unknown") candidates_df.drop_duplicates(subset=['Full Name'], keep='first', inplace=True) with st.expander("Preview uploaded data"): st.subheader("Jobs Data Preview"); st.dataframe(jobs_df1.head(5)) # Column mapping (simplified, ensure your CSVs have these exact names or adjust) # candidates_df = candidates_df.rename(columns={...}) # Add if needed display_job_selection(jobs_df, candidates_df, job_sheet) # job_sheet is 'sh' except Exception as e: st.error(f"Error processing files or data: {e}") st.divider() def display_job_selection(jobs_df, candidates_df, sh): st.subheader("Select a job to view potential matches") job_options = [f"{row['Role']} at {row['Company']}" for _, row in jobs_df.iterrows()] if 'last_selected_job_index' not in st.session_state: st.session_state.last_selected_job_index = 0 selected_job_index = st.selectbox( "Jobs:", range(len(job_options)), format_func=lambda x: job_options[x], key="job_selectbox" ) # Clear previous job state when a new job is selected if selected_job_index != st.session_state.last_selected_job_index: old_job_key = st.session_state.last_selected_job_index job_processed_key = f"job_{old_job_key}_processed_successfully" job_is_processing_key = f"job_{old_job_key}_is_currently_processing" # Remove old job flags for key in [job_processed_key, job_is_processing_key, 'stop_processing_flag', 'total_input_tokens', 'total_output_tokens']: st.session_state.pop(key, None) # Clear selected candidates for old job if they exist if 'Selected_Candidates' in st.session_state: st.session_state.Selected_Candidates.pop(old_job_key, None) # Clear cache to avoid old data in UI st.cache_data.clear() # Update last selected job index st.session_state.last_selected_job_index = selected_job_index # Rerun to refresh UI and prevent stale data st.rerun() # Ensure Selected_Candidates is initialized for the new job if 'Selected_Candidates' not in st.session_state: st.session_state.Selected_Candidates = {} if selected_job_index not in st.session_state.Selected_Candidates: st.session_state.Selected_Candidates[selected_job_index] = [] # Proceed with job details job_row = jobs_df.iloc[selected_job_index] job_row_stack = parse_tech_stack(job_row["Tech Stack"]) col_job_details_display, _ = st.columns([2, 1]) with col_job_details_display: st.subheader(f"Job Details: {job_row['Role']}") job_details_dict = { "Company": job_row["Company"], "Role": job_row["Role"], "Description": job_row.get("One liner", "N/A"), "Locations": job_row.get("Locations", "N/A"), "Industry": job_row.get("Industry", "N/A"), "Tech Stack": display_tech_stack(job_row_stack) } for key, value in job_details_dict.items(): st.markdown(f"**{key}:** {value}") job_processed_key = f"job_{selected_job_index}_processed_successfully" job_is_processing_key = f"job_{selected_job_index}_is_currently_processing" st.session_state.setdefault(job_processed_key, False) st.session_state.setdefault(job_is_processing_key, False) sheet_name = f"{job_row['Role']} at {job_row['Company']}".strip()[:100] worksheet_exists = False existing_candidates_from_sheet = [] try: cand_ws = sh.worksheet(sheet_name) worksheet_exists = True data = cand_ws.get_all_values() if len(data) > 1: existing_candidates_from_sheet = data except Exception: pass if not st.session_state[job_processed_key] or existing_candidates_from_sheet: col_find, col_stop = st.columns(2) with col_find: if st.button("Find Matching Candidates for this Job", key=f"find_btn_{selected_job_index}", disabled=st.session_state[job_is_processing_key]): if not os.environ.get("OPENAI_API_KEY") or st.session_state.llm_chain is None: st.error("OpenAI API key not set or LLM not initialized.") else: st.session_state[job_is_processing_key] = True st.session_state.stop_processing_flag = False st.session_state.Selected_Candidates[selected_job_index] = [] st.rerun() with col_stop: if st.session_state[job_is_processing_key]: if st.button("STOP Processing", key=f"stop_btn_{selected_job_index}"): st.session_state.stop_processing_flag = True st.cache_data.clear() st.warning("Stop request sent. Processing will halt shortly.") st.rerun() if st.session_state[job_is_processing_key]: with st.spinner(f"Processing candidates for {job_row['Role']} at {job_row['Company']}..."): processed_list = process_candidates_for_job(job_row, candidates_df, st.session_state.llm_chain) st.session_state[job_is_processing_key] = False if not st.session_state.get('stop_processing_flag', False): if processed_list: processed_list.sort(key=lambda x: x.get("Fit Score", 0.0), reverse=True) st.session_state.Selected_Candidates[selected_job_index] = processed_list st.session_state[job_processed_key] = True try: target_ws = sh.worksheet(sheet_name) if worksheet_exists else sh.add_worksheet( title=sheet_name, rows=max(100, len(processed_list)+10), cols=20) headers = list(processed_list[0].keys()) rows = [headers] + [[str(c.get(h, "")) for h in headers] for c in processed_list] target_ws.clear() target_ws.update('A1', rows) st.success(f"Results saved to Google Sheet: '{sheet_name}'") except Exception as e: st.error(f"Error writing to Google Sheet '{sheet_name}': {e}") else: st.info("No suitable candidates found after processing.") st.session_state.Selected_Candidates[selected_job_index] = [] st.session_state[job_processed_key] = True else: st.info("Processing was stopped by user.") st.session_state[job_processed_key] = False st.session_state.Selected_Candidates[selected_job_index] = [] st.session_state.pop('stop_processing_flag', None) st.rerun() should_display = False final_candidates = [] if not st.session_state[job_is_processing_key]: if st.session_state[job_processed_key]: should_display = True final_candidates = st.session_state.Selected_Candidates.get(selected_job_index, []) elif existing_candidates_from_sheet: should_display = True headers = existing_candidates_from_sheet[0] for row in existing_candidates_from_sheet[1:]: cand = {headers[i]: row[i] if i < len(row) else None for i in range(len(headers))} try: cand['Fit Score'] = float(cand.get('Fit Score', 0)) except: cand['Fit Score'] = 0.0 final_candidates.append(cand) final_candidates.sort(key=lambda x: x.get('Fit Score', 0.0), reverse=True) if should_display: col_title, col_copyall = st.columns([3, 1]) with col_title: st.subheader("Selected Candidates") with col_copyall: combined_text = "" for cand in final_candidates: combined_text += f"Name: {cand.get('Name','N/A')}\nLinkedIn URL: {cand.get('LinkedIn','N/A')}\n\n" import json html = f''' ''' st.components.v1.html(html, height=60) if st.session_state.get(job_processed_key) and ( st.session_state.get('total_input_tokens',0) > 0 or st.session_state.get('total_output_tokens',0) > 0): display_token_usage() for i, candidate in enumerate(final_candidates): score = candidate.get('Fit Score', 0.0) score_display = f"{score:.3f}" if isinstance(score, (int, float)) else score exp_title = f"{i+1}. {candidate.get('Name','N/A')} (Score: {score_display})" with st.expander(exp_title): text_copy = f"Candidate: {candidate.get('Name','N/A')}\nLinkedIn: {candidate.get('LinkedIn','N/A')}\n" btn = f"copy_btn_job{selected_job_index}_cand{i}" js = f''' ''' cols = st.columns([0.82,0.18]) with cols[1]: st.components.v1.html(js, height=40) with cols[0]: st.markdown(f"**Summary:** {candidate.get('summary','N/A')}") st.markdown(f"**Current:** {candidate.get('Current Title & Company','N/A')}") st.markdown(f"**Education:** {candidate.get('Educational Background','N/A')}") st.markdown(f"**Experience:** {candidate.get('Years of Experience','N/A')}") st.markdown(f"**Location:** {candidate.get('Location','N/A')}") if candidate.get('LinkedIn'): st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**") if candidate.get('justification'): st.markdown("**Justification:**") st.info(candidate['justification']) if st.button("Reset and Process Again", key=f"reset_btn_{selected_job_index}"): st.session_state[job_processed_key] = False st.session_state.pop(job_is_processing_key, None) st.session_state.Selected_Candidates.pop(selected_job_index, None) st.cache_data.clear() try: sh.worksheet(sheet_name).clear() except: pass st.rerun() if __name__ == "__main__": main()