Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
#from faster_whisper import WhisperModel
|
4 |
|
5 |
-
#model_size = 'aka7774/whisper-large-v3-ct2'
|
6 |
model_size = 'large-v3'
|
7 |
-
model = whisper.load_model(model_size, device="
|
8 |
-
#_ = model.half()
|
9 |
-
#_ = model.cuda()
|
10 |
|
11 |
-
#for m in model.modules():
|
12 |
-
# if isinstance(m, whisper.model.LayerNorm):
|
13 |
-
# m.float()
|
14 |
-
|
15 |
-
# model = WhisperModel(model_size, device="cuda", compute_type="float16")
|
16 |
# or run on GPU with INT8
|
17 |
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
|
18 |
# or run on CPU with INT8
|
@@ -22,26 +13,26 @@ def speech_to_text(audio_file, _model_size):
|
|
22 |
global model_size, model
|
23 |
if model_size != _model_size:
|
24 |
model_size = _model_size
|
25 |
-
model = whisper.load_model(model_size)
|
26 |
|
27 |
with torch.no_grad():
|
28 |
-
|
29 |
audio_file,
|
30 |
verbose=True,
|
31 |
language='japanese',
|
32 |
beam_size=5,
|
33 |
-
|
34 |
-
without_timestamps=False
|
35 |
)
|
36 |
-
#segments, info = model.transcribe(audio_file, beam_size=5)
|
37 |
|
38 |
-
|
39 |
-
|
|
|
40 |
|
41 |
gr.Interface(
|
42 |
fn=speech_to_text,
|
43 |
inputs=[
|
44 |
gr.Audio(source="upload", type="filepath"),
|
45 |
-
gr.Dropdown(value=model_size, choices=["tiny", "base", "small", "medium", "large", "large-v2", "large-v3"
|
46 |
],
|
47 |
outputs="text").launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from faster_whisper import WhisperModel
|
|
|
3 |
|
|
|
4 |
model_size = 'large-v3'
|
5 |
+
model = whisper.load_model(model_size, device="auto", compute_type="float16")
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
7 |
# or run on GPU with INT8
|
8 |
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
|
9 |
# or run on CPU with INT8
|
|
|
13 |
global model_size, model
|
14 |
if model_size != _model_size:
|
15 |
model_size = _model_size
|
16 |
+
model = whisper.load_model(model_size, device="auto", compute_type="float16")
|
17 |
|
18 |
with torch.no_grad():
|
19 |
+
segments, info = model.transcribe(
|
20 |
audio_file,
|
21 |
verbose=True,
|
22 |
language='japanese',
|
23 |
beam_size=5,
|
24 |
+
vad_filter=True,
|
25 |
+
without_timestamps=False,
|
26 |
)
|
|
|
27 |
|
28 |
+
text = ''
|
29 |
+
for segment in segments:
|
30 |
+
text += "{segment.start:.2f}\t{segment.end:.2f}\t{segment.text}\n"
|
31 |
|
32 |
gr.Interface(
|
33 |
fn=speech_to_text,
|
34 |
inputs=[
|
35 |
gr.Audio(source="upload", type="filepath"),
|
36 |
+
gr.Dropdown(value=model_size, choices=["tiny", "base", "small", "medium", "large", "large-v2", "large-v3"]),
|
37 |
],
|
38 |
outputs="text").launch()
|