Spaces:
Running
Running
| import torch | |
| import spaces | |
| import numpy as np | |
| import gradio as gr | |
| from src.util.base import * | |
| from src.util.params import * | |
| def display_circular_images( | |
| prompt, seed, num_inference_steps, num_images, degree, progress=gr.Progress() | |
| ): | |
| np.random.seed(seed) | |
| text_embeddings = get_text_embeddings(prompt) | |
| latents_x = generate_latents(seed) | |
| latents_y = generate_latents(seed * np.random.randint(0, 100000)) | |
| scale_x = torch.cos( | |
| torch.linspace(0, 2, num_images) * torch.pi * (degree / 360) | |
| ).to(torch_device) | |
| scale_y = torch.sin( | |
| torch.linspace(0, 2, num_images) * torch.pi * (degree / 360) | |
| ).to(torch_device) | |
| noise_x = torch.tensordot(scale_x, latents_x, dims=0) | |
| noise_y = torch.tensordot(scale_y, latents_y, dims=0) | |
| noise = noise_x + noise_y | |
| progress(0) | |
| images = [] | |
| for i in range(num_images): | |
| progress(i / num_images) | |
| image = generate_images(noise[i], text_embeddings, num_inference_steps) | |
| images.append((image, "{}".format(i))) | |
| progress(1, desc="Exporting as gif") | |
| export_as_gif(images, filename="circular.gif") | |
| fname = "circular" | |
| tab_config = { | |
| "Tab": "Circular", | |
| "Prompt": prompt, | |
| "Number of Steps around the Circle": num_images, | |
| "Proportion of Circle": degree, | |
| "Number of Inference Steps per Image": num_inference_steps, | |
| "Seed": seed, | |
| } | |
| export_as_zip(images, fname, tab_config) | |
| return images, "outputs/circular.gif", f"outputs/{fname}.zip" | |
| __all__ = ["display_circular_images"] | |