Spaces:
Sleeping
Sleeping
File size: 36,706 Bytes
74dd1f4 018670b 9b95875 74dd1f4 9b95875 74dd1f4 9b95875 13af073 74dd1f4 c1d34f4 9b95875 13af073 9b95875 74dd1f4 b820bc7 c1d34f4 9b95875 9b0c0fa c1d34f4 9b95875 b820bc7 9b95875 c1d34f4 9b95875 9b0c0fa 9b95875 b820bc7 c1d34f4 9b95875 c1d34f4 9b95875 b820bc7 c1d34f4 13af073 9b0c0fa 9b95875 c1d34f4 b820bc7 9b95875 c1d34f4 9b95875 9b0c0fa 9b95875 13af073 9b0c0fa c1d34f4 9b0c0fa 9b95875 c1d34f4 9b95875 9b0c0fa 9b95875 74dd1f4 9b95875 74dd1f4 b820bc7 9b95875 9b0c0fa 74dd1f4 9b0c0fa 9b95875 74dd1f4 9b95875 13af073 9b0c0fa 9b95875 9b0c0fa 74dd1f4 9b95875 74dd1f4 9b95875 74dd1f4 9b95875 74dd1f4 9b0c0fa 13af073 9b0c0fa 13af073 9b0c0fa 13af073 9b95875 9b0c0fa 9b95875 b820bc7 9b0c0fa 9b95875 b820bc7 9b0c0fa b820bc7 9b95875 b820bc7 9b95875 9b0c0fa 9b95875 b820bc7 9b95875 9b0c0fa 9b95875 74dd1f4 c1d34f4 45c882e b820bc7 13af073 9b0c0fa 13af073 9b0c0fa 74dd1f4 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 13af073 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 13af073 9b0c0fa 13af073 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 13af073 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 13af073 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 13af073 9b0c0fa 13af073 9b0c0fa 13af073 9b0c0fa 13af073 74dd1f4 9b95875 f679f19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
import gradio as gr
import torch
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
import random
import traceback # Keep traceback for detailed error logging
# Helper function to handle empty values
def safe_value(value, default):
"""Return default if value is empty or None"""
if value is None or value == "":
return default
return value
# Get Hugging Face token from environment variable (as fallback)
DEFAULT_HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN", None)
# Create global variables for model and tokenizer
global_model = None
global_tokenizer = None
model_loaded = False
loaded_model_name = "None" # Keep track of which model was loaded
def load_model(hf_token):
"""Load the model with the provided token"""
global global_model, global_tokenizer, model_loaded, loaded_model_name
# Initially assume tabs should be hidden until successful load
initial_tabs_update = gr.Tabs.update(visible=False)
if not hf_token:
model_loaded = False
loaded_model_name = "None"
return "β οΈ Please enter your Hugging Face token to use the model.", initial_tabs_update
try:
# Try different model versions from smallest to largest
model_options = [
"google/gemma-2b-it",
"google/gemma-7b-it",
"google/gemma-2b",
"google/gemma-7b",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0" # Fallback
]
print(f"Attempting to load models with token starting with: {hf_token[:5]}...")
loaded_successfully = False
for model_name in model_options:
try:
print(f"\n--- Attempting to load model: {model_name} ---")
is_gemma = "gemma" in model_name.lower()
current_token = hf_token if is_gemma else None
print("Loading tokenizer...")
global_tokenizer = AutoTokenizer.from_pretrained(
model_name,
token=current_token
)
print("Tokenizer loaded successfully.")
print(f"Loading model {model_name}...")
global_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16, # Using float16 for broader compatibility
device_map="auto",
token=current_token
)
print(f"Model {model_name} loaded successfully!")
model_loaded = True
loaded_model_name = model_name
loaded_successfully = True
tabs_update = gr.Tabs.update(visible=True)
status_msg = f"β
Model '{model_name}' loaded successfully!"
if "tinyllama" in model_name.lower():
status_msg = f"β
Fallback model '{model_name}' loaded successfully! Limited capabilities compared to Gemma."
return status_msg, tabs_update
except ImportError as import_err:
print(f"Import Error loading {model_name}: {import_err}. Check dependencies (e.g., bitsandbytes, accelerate).")
continue
except Exception as specific_e:
print(f"Failed to load {model_name}: {specific_e}")
if "401 Client Error" in str(specific_e) or "requires you to be logged in" in str(specific_e) and is_gemma:
print("Authentication error likely. Check token and license agreement.")
continue
if not loaded_successfully:
model_loaded = False
loaded_model_name = "None"
print("Could not load any model version.")
return "β Could not load any model. Please check your token, license acceptance, dependencies, and network connection.", initial_tabs_update
except Exception as e:
model_loaded = False
loaded_model_name = "None"
error_msg = str(e)
print(f"Error in load_model: {error_msg}")
traceback.print_exc()
if "401 Client Error" in error_msg or "requires you to be logged in" in error_msg :
return "β Authentication failed. Check token/license.", initial_tabs_update
else:
return f"β Unexpected error during model loading: {error_msg}", initial_tabs_update
def generate_prompt(task_type, **kwargs):
"""Generate appropriate prompts based on task type and parameters"""
prompts = {
"creative": "Write a {style} about {topic}. Be creative and engaging.",
"informational": "Write an {format_type} about {topic}. Be clear, factual, and informative.",
"summarize": "Summarize the following text concisely:\n\n{text}",
"translate": "Translate the following text to {target_lang}:\n\n{text}",
"qa": "Based on the following text:\n\n{text}\n\nAnswer this question: {question}",
"code_generate": "Write {language} code to {task}. Include comments explaining the code.",
"code_explain": "Explain the following {language} code in simple terms:\n\n```\n{code}\n```",
"code_debug": "Identify and fix the potential bug(s) in the following {language} code. Explain the fix:\n\n```\n{code}\n```",
"brainstorm": "Brainstorm {category} ideas about {topic}. Provide a diverse list.",
"content_creation": "Create a {content_type} about {topic} targeting {audience}. Make it engaging.",
"email_draft": "Draft a professional {email_type} email regarding the following:\n\n{context}",
"document_edit": "Improve the following text for {edit_type}:\n\n{text}",
"explain": "Explain {topic} clearly for a {level} audience.",
"classify": "Classify the following text into one of these categories: {categories}\n\nText: {text}\n\nCategory:",
"data_extract": "Extract the following data points ({data_points}) from the text below:\n\nText: {text}\n\nExtracted Data:",
}
prompt_template = prompts.get(task_type)
if prompt_template:
try:
keys_in_template = [k[1:-1] for k in prompt_template.split('{') if '}' in k for k in [k.split('}')[0]]]
final_kwargs = {key: kwargs.get(key, f"[{key}]") for key in keys_in_template}
final_kwargs.update(kwargs) # Add extras
return prompt_template.format(**final_kwargs)
except KeyError as e:
print(f"Warning: Missing key for prompt template '{task_type}': {e}")
return kwargs.get("prompt", f"Generate text based on: {kwargs}")
else:
return kwargs.get("prompt", "Generate text based on the input.")
def generate_text(prompt, max_new_tokens=1024, temperature=0.7, top_p=0.9):
"""Generate text using the loaded model"""
global global_model, global_tokenizer, model_loaded, loaded_model_name
print(f"\n--- Generating Text ---")
print(f"Model: {loaded_model_name}")
print(f"Params: max_new_tokens={max_new_tokens}, temp={temperature}, top_p={top_p}")
print(f"Prompt (start): {prompt[:150]}...")
if not model_loaded or global_model is None or global_tokenizer is None:
return "β οΈ Model not loaded. Please authenticate first."
if not prompt:
return "β οΈ Please enter a prompt or configure a task."
try:
chat_prompt = prompt # Default to raw prompt
if loaded_model_name and ("it" in loaded_model_name.lower() or "instruct" in loaded_model_name.lower() or "chat" in loaded_model_name.lower()):
if "gemma" in loaded_model_name.lower():
# Use Gemma's specific format
chat_prompt = f"<start_of_turn>user\n{prompt}<end_of_turn>\n<start_of_turn>model\n"
elif "tinyllama" in loaded_model_name.lower():
# Use TinyLlama's chat format
chat_prompt = f"<|system|>\nYou are a friendly chatbot.</s>\n<|user|>\n{prompt}</s>\n<|assistant|>\n"
else: # Generic instruction format
chat_prompt = f"User: {prompt}\nAssistant:"
inputs = global_tokenizer(chat_prompt, return_tensors="pt", add_special_tokens=True).to(global_model.device)
input_length = inputs.input_ids.shape[1]
print(f"Input token length: {input_length}")
effective_max_new_tokens = min(int(max_new_tokens), 2048)
# Handle potential None for eos_token_id
eos_token_id = global_tokenizer.eos_token_id
if eos_token_id is None:
print("Warning: eos_token_id is None, using default 50256.")
eos_token_id = 50256 # A common default EOS token ID
generation_args = {
"input_ids": inputs.input_ids,
"attention_mask": inputs.attention_mask,
"max_new_tokens": effective_max_new_tokens,
"do_sample": True,
"temperature": float(temperature),
"top_p": float(top_p),
"pad_token_id": eos_token_id # Use determined EOS or default
}
print(f"Generation args: {generation_args}")
with torch.no_grad():
outputs = global_model.generate(**generation_args)
generated_ids = outputs[0, input_length:]
generated_text = global_tokenizer.decode(generated_ids, skip_special_tokens=True)
print(f"Generated text length: {len(generated_text)}")
print(f"Generated text (start): {generated_text[:150]}...")
return generated_text.strip()
except Exception as e:
error_msg = str(e)
print(f"Generation error: {error_msg}")
traceback.print_exc()
if "CUDA out of memory" in error_msg:
return f"β Error: CUDA out of memory. Try reducing 'Max New Tokens' or using a smaller model."
elif "probability tensor contains nan" in error_msg or "invalid value encountered" in error_msg:
return f"β Error: Generation failed (invalid probability). Try adjusting Temperature/Top-P or modifying the prompt."
else:
return f"β Error during text generation: {error_msg}"
# --- UI Components & Layout ---
def create_parameter_ui():
with gr.Accordion("β¨ Generation Parameters", open=False):
with gr.Row():
max_new_tokens = gr.Slider(minimum=64, maximum=2048, value=512, step=64, label="Max New Tokens", info="Max tokens to generate.")
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature", info="Controls randomness.")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P", info="Nucleus sampling probability.")
return [max_new_tokens, temperature, top_p]
# Language map (defined once)
lang_map = {"Python": "python", "JavaScript": "javascript", "Java": "java", "C++": "cpp", "HTML": "html", "CSS": "css", "SQL": "sql", "Bash": "bash", "Rust": "rust", "Other": "plaintext"}
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True, title="Gemma Capabilities Demo") as demo:
# Header
gr.Markdown(
"""
<div style="text-align: center; margin-bottom: 20px;"><h1><span style="font-size: 1.5em;">π€</span> Gemma Capabilities Demo</h1>
<p>Explore text generation with Google's Gemma models (or a fallback).</p>
<p style="font-size: 0.9em;"><a href="https://huggingface.co/google/gemma-7b-it" target="_blank">[Accept Gemma License Here]</a></p></div>"""
)
# --- Authentication ---
with gr.Group(): # Removed variant="panel"
gr.Markdown("### π Authentication")
with gr.Row():
with gr.Column(scale=4):
hf_token = gr.Textbox(label="Hugging Face Token", placeholder="Paste token (hf_...)", type="password", value=DEFAULT_HF_TOKEN, info="Needed for Gemma models.")
with gr.Column(scale=1, min_width=150):
auth_button = gr.Button("Load Model", variant="primary")
auth_status = gr.Markdown("βΉοΈ Enter token & click 'Load Model'. May take time.")
gr.Markdown(
"**Token Info:** Get from [HF Settings](https://huggingface.co/settings/tokens) (read access). Ensure Gemma license is accepted.",
elem_id="token-info" # Optional ID for styling if needed later
)
# --- Main Content Tabs ---
with gr.Tabs(elem_id="main_tabs", visible=False) as tabs:
# --- Text Generation Tab ---
with gr.TabItem("π Creative & Informational"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Configure Task")
text_gen_type = gr.Radio(["Creative Writing", "Informational Writing", "Custom Prompt"], label="Writing Type", value="Creative Writing")
with gr.Group(visible=True) as creative_options:
style = gr.Dropdown(["short story", "poem", "script", "song lyrics", "joke", "dialogue"], label="Style", value="short story")
creative_topic = gr.Textbox(label="Topic", placeholder="e.g., a lonely astronaut", value="a robot discovering music", lines=2)
with gr.Group(visible=False) as info_options:
format_type = gr.Dropdown(["article", "summary", "explanation", "report", "comparison"], label="Format", value="article")
info_topic = gr.Textbox(label="Topic", placeholder="e.g., quantum physics basics", value="AI impact on healthcare", lines=2)
with gr.Group(visible=False) as custom_prompt_group:
custom_prompt = gr.Textbox(label="Custom Prompt", placeholder="Enter full prompt...", lines=5)
text_gen_params = create_parameter_ui()
# Removed gr.Spacer
generate_text_btn = gr.Button("Generate Text", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Generated Output")
text_output = gr.Textbox(label="Result", lines=25, interactive=False, show_copy_button=True)
# Visibility logic
def update_text_gen_visibility(choice):
return { creative_options: gr.update(visible=choice == "Creative Writing"),
info_options: gr.update(visible=choice == "Informational Writing"),
custom_prompt_group: gr.update(visible=choice == "Custom Prompt") }
text_gen_type.change(update_text_gen_visibility, text_gen_type, [creative_options, info_options, custom_prompt_group], queue=False)
# Click handler
def text_gen_click(gen_type, style, c_topic, fmt_type, i_topic, custom_pr, *params):
task_map = {"Creative Writing": ("creative", {"style": style, "topic": c_topic}),
"Informational Writing": ("informational", {"format_type": fmt_type, "topic": i_topic}),
"Custom Prompt": ("custom", {"prompt": custom_pr})}
task_type, kwargs = task_map.get(gen_type, ("custom", {"prompt": custom_pr}))
# Apply safe_value inside handler where needed
if task_type == "creative": kwargs = {"style": safe_value(style, "story"), "topic": safe_value(c_topic, "[topic]")}
elif task_type == "informational": kwargs = {"format_type": safe_value(fmt_type, "article"), "topic": safe_value(i_topic, "[topic]")}
else: kwargs = {"prompt": safe_value(custom_pr, "Write something.")}
final_prompt = generate_prompt(task_type, **kwargs)
return generate_text(final_prompt, *params)
generate_text_btn.click(text_gen_click, [text_gen_type, style, creative_topic, format_type, info_topic, custom_prompt, *text_gen_params], text_output)
# Examples
gr.Examples( examples=[ ["Creative Writing", "poem", "sound of rain", "", "", "", 512, 0.7, 0.9],
["Informational Writing", "", "", "explanation", "photosynthesis", "", 768, 0.6, 0.9],
["Custom Prompt", "", "", "", "", "Dialogue: cat and dog discuss humans.", 512, 0.8, 0.95] ],
inputs=[text_gen_type, style, creative_topic, format_type, info_topic, custom_prompt, *text_gen_params[:3]], # Pass UI elements
outputs=text_output, label="Try examples...")
# --- Brainstorming Tab ---
with gr.TabItem("π§ Brainstorming"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Setup")
brainstorm_category = gr.Dropdown(["project", "business", "creative", "solution", "content", "feature", "product name"], label="Category", value="project")
brainstorm_topic = gr.Textbox(label="Topic/Problem", placeholder="e.g., reducing plastic waste", value="unique mobile app ideas", lines=3)
brainstorm_params = create_parameter_ui()
# Removed gr.Spacer
brainstorm_btn = gr.Button("Generate Ideas", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Generated Ideas")
brainstorm_output = gr.Textbox(label="Result", lines=25, interactive=False, show_copy_button=True)
def brainstorm_click(category, topic, *params):
prompt = generate_prompt("brainstorm", category=safe_value(category, "project"), topic=safe_value(topic, "ideas"))
return generate_text(prompt, *params)
brainstorm_btn.click(brainstorm_click, [brainstorm_category, brainstorm_topic, *brainstorm_params], brainstorm_output)
gr.Examples([ ["solution", "engaging online learning", 768, 0.8, 0.9],
["business", "eco-friendly subscription boxes", 768, 0.75, 0.9],
["creative", "fantasy novel themes", 512, 0.85, 0.95] ],
inputs=[brainstorm_category, brainstorm_topic, *brainstorm_params[:3]], outputs=brainstorm_output, label="Try examples...")
# --- Code Tab ---
with gr.TabItem("π» Code"):
with gr.Tabs():
with gr.TabItem("Generate"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Setup")
code_lang_gen = gr.Dropdown(list(lang_map.keys())[:-1], label="Language", value="Python")
code_task = gr.Textbox(label="Task", placeholder="e.g., function for factorial", value="Python class for calculator", lines=4)
code_gen_params = create_parameter_ui()
# Removed gr.Spacer
code_gen_btn = gr.Button("Generate Code", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Generated Code")
code_output = gr.Code(label="Result", language="python", lines=25, interactive=False)
def gen_code_click(lang, task, *params):
prompt = generate_prompt("code_generate", language=safe_value(lang, "Python"), task=safe_value(task, "hello world"))
result = generate_text(prompt, *params)
# Basic code block extraction
if "```" in result:
parts = result.split("```")
if len(parts) >= 2:
block = parts[1]
if '\n' in block: first_line, rest = block.split('\n', 1); return rest.strip() if first_line.strip().lower() == lang.lower() else block.strip()
else: return block.strip()
return result.strip()
def update_gen_lang_display(lang): return gr.Code.update(language=lang_map.get(lang, "plaintext"))
code_lang_gen.change(update_gen_lang_display, code_lang_gen, code_output, queue=False)
code_gen_btn.click(gen_code_click, [code_lang_gen, code_task, *code_gen_params], code_output)
gr.Examples([ ["JavaScript", "email validation regex function", 768, 0.6, 0.9],
["SQL", "select users > 30 yrs old", 512, 0.5, 0.8],
["HTML", "basic portfolio structure", 1024, 0.7, 0.9] ],
inputs=[code_lang_gen, code_task, *code_gen_params[:3]], outputs=code_output, label="Try examples...")
with gr.TabItem("Explain"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Setup")
code_lang_explain = gr.Dropdown(list(lang_map.keys()), label="Language", value="Python")
code_to_explain = gr.Code(label="Code to Explain", language="python", lines=15)
explain_code_params = create_parameter_ui()
# Removed gr.Spacer
explain_code_btn = gr.Button("Explain Code", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Explanation")
code_explanation = gr.Textbox(label="Result", lines=25, interactive=False, show_copy_button=True)
def explain_code_click(lang, code, *params):
code_content = safe_value(code['code'] if isinstance(code, dict) else code, "# Empty code")
prompt = generate_prompt("code_explain", language=safe_value(lang, "code"), code=code_content)
return generate_text(prompt, *params)
def update_explain_lang_display(lang): return gr.Code.update(language=lang_map.get(lang, "plaintext"))
code_lang_explain.change(update_explain_lang_display, code_lang_explain, code_to_explain, queue=False)
explain_code_btn.click(explain_code_click, [code_lang_explain, code_to_explain, *explain_code_params], code_explanation)
with gr.TabItem("Debug"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Setup")
code_lang_debug = gr.Dropdown(list(lang_map.keys()), label="Language", value="Python")
code_to_debug = gr.Code(label="Buggy Code", language="python", lines=15, value="def avg(nums):\n # Potential div by zero\n return sum(nums)/len(nums)")
debug_code_params = create_parameter_ui()
# Removed gr.Spacer
debug_code_btn = gr.Button("Debug Code", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Debugging Analysis")
debug_result = gr.Textbox(label="Result", lines=25, interactive=False, show_copy_button=True)
def debug_code_click(lang, code, *params):
code_content = safe_value(code['code'] if isinstance(code, dict) else code, "# Empty code")
prompt = generate_prompt("code_debug", language=safe_value(lang, "code"), code=code_content)
return generate_text(prompt, *params)
def update_debug_lang_display(lang): return gr.Code.update(language=lang_map.get(lang, "plaintext"))
code_lang_debug.change(update_debug_lang_display, code_lang_debug, code_to_debug, queue=False)
debug_code_btn.click(debug_code_click, [code_lang_debug, code_to_debug, *debug_code_params], debug_result)
# --- Comprehension Tab ---
with gr.TabItem("π Comprehension"):
with gr.Tabs():
with gr.TabItem("Summarize"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Setup")
summarize_text = gr.Textbox(label="Text to Summarize", lines=15, placeholder="Paste long text...")
summarize_params = create_parameter_ui()
# Removed gr.Spacer
summarize_btn = gr.Button("Summarize Text", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Summary")
summary_output = gr.Textbox(label="Result", lines=15, interactive=False, show_copy_button=True)
def summarize_click(text, *params):
prompt = generate_prompt("summarize", text=safe_value(text, "[empty text]"))
# Adjust max tokens for summary specifically if needed
p_list = list(params); p_list[0] = min(max(int(p_list[0]), 64), 512)
return generate_text(prompt, *p_list)
summarize_btn.click(summarize_click, [summarize_text, *summarize_params], summary_output)
with gr.TabItem("Q & A"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Setup")
qa_text = gr.Textbox(label="Context Text", lines=10, placeholder="Paste text containing answer...")
qa_question = gr.Textbox(label="Question", placeholder="Ask question about text...")
qa_params = create_parameter_ui()
# Removed gr.Spacer
qa_btn = gr.Button("Get Answer", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Answer")
qa_output = gr.Textbox(label="Result", lines=10, interactive=False, show_copy_button=True)
def qa_click(text, question, *params):
prompt = generate_prompt("qa", text=safe_value(text, "[context]"), question=safe_value(question,"[question]"))
p_list = list(params); p_list[0] = min(max(int(p_list[0]), 32), 256)
return generate_text(prompt, *p_list)
qa_btn.click(qa_click, [qa_text, qa_question, *qa_params], qa_output)
with gr.TabItem("Translate"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Setup")
translate_text = gr.Textbox(label="Text to Translate", lines=8, placeholder="Enter text...")
target_lang = gr.Dropdown(["French", "Spanish", "German", "Japanese", "Chinese", "Russian", "Arabic", "Hindi", "Portuguese", "Italian"], label="Translate To", value="French")
translate_params = create_parameter_ui()
# Removed gr.Spacer
translate_btn = gr.Button("Translate Text", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Translation")
translation_output = gr.Textbox(label="Result", lines=8, interactive=False, show_copy_button=True)
def translate_click(text, lang, *params):
prompt = generate_prompt("translate", text=safe_value(text,"[text]"), target_lang=safe_value(lang,"French"))
p_list = list(params); p_list[0] = max(int(p_list[0]), 64)
return generate_text(prompt, *p_list)
translate_btn.click(translate_click, [translate_text, target_lang, *translate_params], translation_output)
# --- More Tasks Tab ---
with gr.TabItem("π οΈ More Tasks"):
with gr.Tabs():
with gr.TabItem("Content Creation"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Setup")
content_type = gr.Dropdown(["blog post outline", "social media post (Twitter)", "social media post (LinkedIn)", "marketing email subject line", "product description", "press release intro"], label="Content Type", value="blog post outline")
content_topic = gr.Textbox(label="Topic", value="sustainable travel tips", lines=2)
content_audience = gr.Textbox(label="Audience", value="eco-conscious millennials")
content_params = create_parameter_ui()
# Removed gr.Spacer
content_btn = gr.Button("Generate Content", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Generated Content")
content_output = gr.Textbox(label="Result", lines=20, interactive=False, show_copy_button=True)
def content_click(c_type, topic, audience, *params):
prompt = generate_prompt("content_creation", content_type=safe_value(c_type,"text"), topic=safe_value(topic,"[topic]"), audience=safe_value(audience,"[audience]"))
return generate_text(prompt, *params)
content_btn.click(content_click, [content_type, content_topic, content_audience, *content_params], content_output)
with gr.TabItem("Email Drafting"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Setup")
email_type = gr.Dropdown(["job inquiry", "meeting request", "follow-up", "thank you", "support response", "sales outreach"], label="Email Type", value="meeting request")
email_context = gr.Textbox(label="Context/Points", lines=5, value="Request meeting next week re: project X. Suggest Tue/Wed afternoon.")
email_params = create_parameter_ui()
# Removed gr.Spacer
email_btn = gr.Button("Generate Draft", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Generated Draft")
email_output = gr.Textbox(label="Result", lines=20, interactive=False, show_copy_button=True)
def email_click(e_type, context, *params):
prompt = generate_prompt("email_draft", email_type=safe_value(e_type,"email"), context=safe_value(context,"[context]"))
return generate_text(prompt, *params)
email_btn.click(email_click, [email_type, email_context, *email_params], email_output)
with gr.TabItem("Doc Editing"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Setup")
edit_text = gr.Textbox(label="Text to Edit", lines=10, placeholder="Paste text...")
edit_type = gr.Dropdown(["improve clarity", "fix grammar/spelling", "make concise", "make formal", "make casual", "simplify"], label="Improve For", value="improve clarity")
edit_params = create_parameter_ui()
# Removed gr.Spacer
edit_btn = gr.Button("Edit Text", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Edited Text")
edit_output = gr.Textbox(label="Result", lines=10, interactive=False, show_copy_button=True)
def edit_click(text, e_type, *params):
prompt = generate_prompt("document_edit", text=safe_value(text,"[text]"), edit_type=safe_value(e_type,"clarity"))
p_list = list(params); input_tokens = len(safe_value(text,"").split()); p_list[0] = max(int(p_list[0]), input_tokens + 64)
return generate_text(prompt, *p_list)
edit_btn.click(edit_click, [edit_text, edit_type, *edit_params], edit_output)
with gr.TabItem("Classification"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Setup")
classify_text = gr.Textbox(label="Text to Classify", lines=8, value="Sci-fi movie explores AI consciousness.")
classify_categories = gr.Textbox(label="Categories (comma-sep)", value="Tech, Entertainment, Science, Politics")
classify_params = create_parameter_ui()
# Removed gr.Spacer
classify_btn = gr.Button("Classify Text", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Classification")
classify_output = gr.Textbox(label="Predicted Category", lines=2, interactive=False, show_copy_button=True)
def classify_click(text, cats, *params):
prompt = generate_prompt("classify", text=safe_value(text,"[text]"), categories=safe_value(cats,"cat1, cat2"))
p_list = list(params); p_list[0] = min(max(int(p_list[0]), 16), 128)
raw = generate_text(prompt, *p_list)
# Basic post-processing attempt
lines = raw.split('\n'); last = lines[-1].strip(); possible = [c.strip().lower() for c in cats.split(',')]; return last if last.lower() in possible else raw
classify_btn.click(classify_click, [classify_text, classify_categories, *classify_params], classify_output)
with gr.TabItem("Data Extraction"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Setup")
extract_text = gr.Textbox(label="Source Text", lines=10, value="Order #123 by Jane ([email protected]). Total: $99. Shipped: 123 Main St.")
extract_data_points = gr.Textbox(label="Data Points (comma-sep)", value="order num, name, email, total, address")
extract_params = create_parameter_ui()
# Removed gr.Spacer
extract_btn = gr.Button("Extract Data", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Extracted Data")
extract_output = gr.Textbox(label="Result (JSON or Key-Value)", lines=10, interactive=False, show_copy_button=True)
def extract_click(text, points, *params):
prompt = generate_prompt("data_extract", text=safe_value(text,"[text]"), data_points=safe_value(points,"info"))
return generate_text(prompt, *params)
extract_btn.click(extract_click, [extract_text, extract_data_points, *extract_params], extract_output)
# --- Authentication Handler & Footer ---
footer_status = gr.Markdown(f"...", elem_id="footer-status-md") # Placeholder
def handle_auth(token):
yield "β³ Authenticating & loading model...", gr.Tabs.update(visible=False)
status_message, tabs_update = load_model(token)
yield status_message, tabs_update
def update_footer_status(status_text): # Updates footer based on global state
return gr.Markdown.update(value=f"""
<hr><div style="text-align: center; font-size: 0.9em; color: #777;">
<p>Powered by Hugging Face π€ Transformers & Gradio. Model: <strong>{loaded_model_name if model_loaded else 'None'}</strong>.</p>
<p>Review outputs carefully. Models may generate inaccurate information.</p></div>""")
auth_button.click(handle_auth, hf_token, [auth_status, tabs], queue=True)
# Update footer whenever auth status text changes
auth_status.change(update_footer_status, auth_status, footer_status, queue=False)
# Initial footer update on load
demo.load(update_footer_status, auth_status, footer_status, queue=False)
# --- Launch App ---
demo.launch(share=False) |