Spaces:
Sleeping
Sleeping
File size: 14,380 Bytes
0c7e136 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
# app.py
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
from datasets import load_dataset
import yaml
import json
import torch
from datetime import datetime
import traceback
# Import our modules
from src.model_loader import load_model, get_model_info
from src.evaluation import evaluate_model_full
from src.leaderboard import load_leaderboard, add_model_results, get_leaderboard_summary, search_models
from src.plotting import create_leaderboard_plot, create_detailed_comparison_plot, create_summary_metrics_plot
from src.utils import validate_model_path, get_model_type, sanitize_input
from config import *
# Global variables for caching
current_leaderboard = None
test_data = None
def load_salt_data():
"""Load SALT dataset for evaluation."""
global test_data
if test_data is not None:
return test_data
try:
print("Loading SALT dataset...")
# Configuration for SALT dataset
dataset_config = f'''
huggingface_load:
path: {SALT_DATASET}
name: text-all
split: dev[:{MAX_EVAL_SAMPLES}]
source:
type: text
language: {SUPPORTED_LANGUAGES}
target:
type: text
language: {SUPPORTED_LANGUAGES}
src_or_tgt_languages_must_contain: eng
allow_same_src_and_tgt_language: False
'''
config = yaml.safe_load(dataset_config)
# Import salt dataset utilities
import salt.dataset
test_data = pd.DataFrame(salt.dataset.create(config))
print(f"Loaded {len(test_data)} evaluation samples")
return test_data
except Exception as e:
print(f"Error loading SALT dataset: {e}")
# Fallback: create minimal test data
test_data = pd.DataFrame({
'source': ['Hello world', 'How are you?'],
'target': ['Amakuru', 'Oli otya?'],
'source.language': ['eng', 'eng'],
'target.language': ['lug', 'lug']
})
return test_data
def refresh_leaderboard():
"""Refresh leaderboard data."""
global current_leaderboard
current_leaderboard = load_leaderboard()
return current_leaderboard
def evaluate_submission(model_path: str, author_name: str) -> tuple:
"""Main evaluation function."""
try:
# Validate inputs
model_path = sanitize_input(model_path)
author_name = sanitize_input(author_name)
if not model_path:
return "β Error: Model path is required", None, None, None
if not author_name:
author_name = "Anonymous"
if not validate_model_path(model_path):
return "β Error: Invalid model path format", None, None, None
# Load test data
test_data = load_salt_data()
if test_data is None or len(test_data) == 0:
return "β Error: Could not load evaluation data", None, None, None
# Get model info
print(f"Getting model info for: {model_path}")
model_info = get_model_info(model_path)
model_type = get_model_type(model_path)
# Load model
print(f"Loading model: {model_path}")
try:
model, tokenizer = load_model(model_path)
except Exception as e:
return f"β Error loading model: {str(e)}", None, None, None
# Run evaluation
print("Starting evaluation...")
try:
detailed_metrics = evaluate_model_full(model, tokenizer, model_path, test_data)
except Exception as e:
return f"β Error during evaluation: {str(e)}", None, None, None
# Extract average metrics
avg_metrics = detailed_metrics.get('averages', {})
if not avg_metrics:
return "β Error: No metrics calculated", None, None, None
# Add results to leaderboard
print("Adding results to leaderboard...")
updated_leaderboard = add_model_results(
model_path=model_path,
author=author_name,
metrics=avg_metrics,
detailed_metrics=detailed_metrics,
evaluation_samples=len(test_data),
model_type=model_type
)
# Update global leaderboard
global current_leaderboard
current_leaderboard = updated_leaderboard
# Create visualizations
leaderboard_plot = create_leaderboard_plot(updated_leaderboard, 'quality_score')
detailed_plot = create_detailed_comparison_plot({model_path: detailed_metrics}, [model_path])
# Format results message
results_msg = f"""
β
**Evaluation Complete!**
**Model:** {model_path}
**Author:** {author_name}
**Type:** {model_type}
**Results:**
- Quality Score: {avg_metrics.get('quality_score', 0):.4f}
- BLEU: {avg_metrics.get('bleu', 0):.2f}
- ChrF: {avg_metrics.get('chrf', 0):.4f}
- ROUGE-L: {avg_metrics.get('rougeL', 0):.4f}
**Ranking:** #{updated_leaderboard[updated_leaderboard['model_path'] == model_path].index[0] + 1} out of {len(updated_leaderboard)} models
"""
return results_msg, updated_leaderboard, leaderboard_plot, detailed_plot
except Exception as e:
error_msg = f"β Unexpected error: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_msg)
return error_msg, None, None, None
def update_leaderboard_display(search_query: str = "") -> tuple:
"""Update leaderboard display with optional search."""
global current_leaderboard
if current_leaderboard is None:
current_leaderboard = refresh_leaderboard()
# Apply search filter
if search_query:
filtered_df = search_models(current_leaderboard, search_query)
else:
filtered_df = current_leaderboard
# Create plots
leaderboard_plot = create_leaderboard_plot(filtered_df, 'quality_score')
summary_plot = create_summary_metrics_plot(filtered_df)
# Get summary stats
summary = get_leaderboard_summary(filtered_df)
summary_text = f"""
π **Leaderboard Summary**
- Total Models: {summary['total_models']}
- Average Quality Score: {summary['avg_quality_score']:.4f}
- Best Model: {summary['best_model']}
- Latest Submission: {summary['latest_submission'][:10] if summary['latest_submission'] != 'None' else 'None'}
"""
return filtered_df, leaderboard_plot, summary_plot, summary_text
# Initialize data
print("Initializing SALT Translation Leaderboard...")
load_salt_data()
refresh_leaderboard()
# Create Gradio interface
with gr.Blocks(
title=TITLE,
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
}
.metric-display {
background: #f8f9fa;
padding: 1rem;
border-radius: 0.5rem;
margin: 0.5rem 0;
}
"""
) as demo:
# Header
gr.Markdown(f"""
<div class="main-header">
# {TITLE}
{DESCRIPTION}
**Supported Languages:** Luganda (lug), Acholi (ach), Swahili (swa), English (eng)
</div>
""")
with gr.Tabs():
# Tab 1: Submit Model
with gr.Tab("π Submit Model", id="submit"):
gr.Markdown("""
### Submit Your Translation Model
Enter a HuggingFace model path (e.g., `microsoft/DialoGPT-medium`) or use `google-translate` to benchmark against Google Translate.
**Supported Model Types:** Gemma, Qwen, Llama, NLLB, Google Translate
""")
with gr.Row():
with gr.Column(scale=2):
model_input = gr.Textbox(
label="π€ HuggingFace Model Path",
placeholder="e.g., Sunbird/gemma3-12b-ug40-merged",
info="Enter the full HuggingFace model path or 'google-translate'"
)
author_input = gr.Textbox(
label="π€ Author/Organization",
placeholder="Your name or organization",
value="Anonymous"
)
submit_btn = gr.Button(
"π Evaluate Model",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
gr.Markdown("""
**π Evaluation Process:**
1. Model validation
2. Loading model weights
3. Generating translations
4. Calculating metrics
5. Updating leaderboard
β±οΈ **Expected time:** 5-15 minutes
""")
# Results section
with gr.Group():
results_output = gr.Markdown(label="π Results")
with gr.Row():
with gr.Column():
results_leaderboard = gr.Dataframe(
label="π Updated Leaderboard",
interactive=False
)
with gr.Row():
results_plot = gr.Plot(label="π Leaderboard Ranking")
detailed_plot = gr.Plot(label="π Detailed Performance")
# Tab 2: Leaderboard
with gr.Tab("π Leaderboard", id="leaderboard"):
with gr.Row():
search_input = gr.Textbox(
label="π Search Models",
placeholder="Search by model name, author, or path...",
scale=3
)
refresh_btn = gr.Button("π Refresh", scale=1)
summary_stats = gr.Markdown(label="π Summary")
with gr.Row():
leaderboard_table = gr.Dataframe(
label="π Model Rankings",
interactive=False,
wrap=True
)
with gr.Row():
leaderboard_viz = gr.Plot(label="π Performance Comparison")
summary_viz = gr.Plot(label="π Top Models Summary")
# Tab 3: Documentation
with gr.Tab("π Documentation", id="docs"):
gr.Markdown("""
## π How to Use the SALT Translation Leaderboard
### π Submitting Your Model
1. **Prepare your model**: Ensure your model is uploaded to HuggingFace Hub
2. **Enter model path**: Use the format `username/model-name`
3. **Add your details**: Provide your name or organization
4. **Submit**: Click "Evaluate Model" and wait for results
### π Metrics Explained
- **Quality Score**: Combined metric (0-1, higher is better)
- **BLEU**: Translation quality (0-100, higher is better)
- **ChrF**: Character-level F-score (0-1, higher is better)
- **ROUGE-L**: Longest common subsequence (0-1, higher is better)
- **CER/WER**: Character/Word Error Rate (0-1, lower is better)
### π― Supported Models
- **Gemma**: Google's Gemma models fine-tuned for translation
- **Qwen**: Alibaba's Qwen models
- **Llama**: Meta's Llama models
- **NLLB**: Facebook's No Language Left Behind models
- **Google Translate**: Baseline comparison
### π Dataset Information
**SALT Dataset**: Sunbird AI's comprehensive translation dataset
- **Languages**: Luganda, Acholi, Swahili, English
- **Evaluation Size**: {MAX_EVAL_SAMPLES} samples
- **Domains**: Multiple domains including news, literature, and conversations
### π API Access
The leaderboard data is available via HuggingFace Datasets:
```python
from datasets import load_dataset
leaderboard = load_dataset("{LEADERBOARD_DATASET}")
```
### π€ Contributing
This leaderboard is maintained by [Sunbird AI](https://sunbird.ai).
For issues or suggestions, please contact us or submit a GitHub issue.
### π License & Citation
If you use this leaderboard in your research, please cite:
```
@misc{{salt_leaderboard_2024,
title={{SALT Translation Leaderboard}},
author={{Sunbird AI}},
year={{2024}},
url={{https://huggingface.co/spaces/Sunbird/salt-translation-leaderboard}}
}}
```
""")
# Event handlers
submit_btn.click(
fn=evaluate_submission,
inputs=[model_input, author_input],
outputs=[results_output, results_leaderboard, results_plot, detailed_plot],
show_progress=True
)
refresh_btn.click(
fn=update_leaderboard_display,
inputs=[search_input],
outputs=[leaderboard_table, leaderboard_viz, summary_viz, summary_stats]
)
search_input.change(
fn=update_leaderboard_display,
inputs=[search_input],
outputs=[leaderboard_table, leaderboard_viz, summary_viz, summary_stats]
)
# Load initial leaderboard data
demo.load(
fn=update_leaderboard_display,
inputs=[],
outputs=[leaderboard_table, leaderboard_viz, summary_viz, summary_stats]
)
# Launch the app
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |