File size: 11,366 Bytes
34a7f8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# src/plotting.py
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import matplotlib.colors as mcolors
from colorsys import rgb_to_hls, hls_to_rgb
from collections import defaultdict
import numpy as np
import pandas as pd
from config import LANGUAGE_NAMES

def create_leaderboard_plot(leaderboard_df: pd.DataFrame, metric: str = 'quality_score') -> plt.Figure:
    """Create a horizontal bar chart showing model rankings."""
    
    fig, ax = plt.subplots(figsize=(12, 8))
    
    # Sort by the selected metric (descending)
    df_sorted = leaderboard_df.sort_values(metric, ascending=True)
    
    # Create color palette
    colors = plt.cm.viridis(np.linspace(0, 1, len(df_sorted)))
    
    # Create horizontal bar chart
    bars = ax.barh(range(len(df_sorted)), df_sorted[metric], color=colors)
    
    # Customize the plot
    ax.set_yticks(range(len(df_sorted)))
    ax.set_yticklabels(df_sorted['model_display_name'])
    ax.set_xlabel(f'{metric.replace("_", " ").title()} Score')
    ax.set_title(f'Model Leaderboard - {metric.replace("_", " ").title()}', fontsize=16, pad=20)
    
    # Add value labels on bars
    for i, (bar, value) in enumerate(zip(bars, df_sorted[metric])):
        ax.text(value + 0.001, bar.get_y() + bar.get_height()/2, 
                f'{value:.3f}', ha='left', va='center', fontweight='bold')
    
    # Add grid for better readability
    ax.grid(axis='x', linestyle='--', alpha=0.7)
    ax.set_axisbelow(True)
    
    # Set x-axis limits with some padding
    max_val = df_sorted[metric].max()
    ax.set_xlim(0, max_val * 1.15)
    
    plt.tight_layout()
    return fig

def create_detailed_comparison_plot(metrics_data: dict, model_names: list) -> plt.Figure:
    """Create detailed comparison plot similar to the original evaluation script."""
    
    # Filter metrics_data to only include models in model_names
    filtered_metrics = {name: metrics_data[name] for name in model_names if name in metrics_data}
    
    if not filtered_metrics:
        # Create empty plot if no data
        fig, ax = plt.subplots(figsize=(10, 6))
        ax.text(0.5, 0.5, 'No data available for comparison', 
                ha='center', va='center', transform=ax.transAxes, fontsize=16)
        ax.set_xlim(0, 1)
        ax.set_ylim(0, 1)
        ax.axis('off')
        return fig
    
    return plot_translation_metric_comparison(filtered_metrics, metric='bleu')

def plot_translation_metric_comparison(metrics_by_model: dict, metric: str = 'bleu') -> plt.Figure:
    """
    Creates a grouped bar chart comparing a selected metric across translation models.
    Adapted from the original plotting code.
    """
    
    # Split language pairs into xx_to_eng and eng_to_xx categories
    first_model_data = list(metrics_by_model.values())[0]
    xx_to_eng = [key for key in first_model_data.keys()
                if key.endswith('_to_eng') and key != 'averages']
    eng_to_xx = [key for key in first_model_data.keys()
                if key.startswith('eng_to_') and key != 'averages']

    # Function to create nice labels
    def format_label(label):
        if label.startswith("eng_to_"):
            source, target = "English", label.replace("eng_to_", "")
            target = LANGUAGE_NAMES.get(target, target)
        else:
            source, target = label.replace("_to_eng", ""), "English"
            source = LANGUAGE_NAMES.get(source, source)
        return f"{source}{target}"

    # Extract metric values for each category
    def extract_metric_values(model_metrics, pairs, metric_name):
        return [model_metrics.get(pair, {}).get(metric_name, 0.0) for pair in pairs]

    xx_to_eng_data = {
        model_name: extract_metric_values(model_data, xx_to_eng, metric)
        for model_name, model_data in metrics_by_model.items()
    }

    eng_to_xx_data = {
        model_name: extract_metric_values(model_data, eng_to_xx, metric)
        for model_name, model_data in metrics_by_model.items()
    }

    averages_data = {
        model_name: [model_data.get("averages", {}).get(metric, 0.0)]
        for model_name, model_data in metrics_by_model.items()
    }

    # Set up plot with custom grid
    fig = plt.figure(figsize=(18, 12))  # Increased height for better spacing

    # Create a GridSpec with 1 row and 5 columns
    gs = gridspec.GridSpec(1, 5)

    # Colors for the models
    model_names = list(metrics_by_model.keys())
    
    family_base_colors = {
        'gemma': '#3274A1',
        'nllb':  '#7f7f7f',
        'qwen':  '#E1812C',
        'google': '#3A923A',
        'other': '#D62728',
    }

    # Identify the family for each model
    def get_family(model_name):
        model_lower = model_name.lower()
        if 'gemma' in model_lower:
            return 'gemma'
        elif 'qwen' in model_lower:
            return 'qwen'
        elif 'nllb' in model_lower:
            return 'nllb'
        elif 'google' in model_lower or model_name == 'google-translate':
            return 'google'
        else:
            return 'other'

    # Count how many models belong to each family
    family_counts = defaultdict(int)
    for model in model_names:
        family = get_family(model)
        family_counts[family] += 1

    # Generate slightly varied lightness within each family
    colors = []
    family_indices = defaultdict(int)
    for model in model_names:
        family = get_family(model)
        base_rgb = mcolors.to_rgb(family_base_colors[family])
        h, l, s = rgb_to_hls(*base_rgb)

        index = family_indices[family]
        count = family_counts[family]

        # Vary lightness: from 0.35 to 0.65
        if count == 1:
            new_l = l  # Keep original for single models
        else:
            new_l = 0.65 - 0.3 * (index / max(count - 1, 1))

        varied_rgb = hls_to_rgb(h, new_l, s)
        hex_color = mcolors.to_hex(varied_rgb)
        colors.append(hex_color)
        family_indices[family] += 1

    bar_width = 0.2
    opacity = 0.8

    # Positions for the bars
    xx_to_eng_indices = np.arange(len(xx_to_eng))
    eng_to_xx_indices = np.arange(len(eng_to_xx))
    avg_index = np.array([0])

    # Determine y-axis limits based on metric
    if metric in ['chrf', 'len_ratio']:
        y_max = 1.1
    elif metric in ['cer', 'wer']:
        y_max = 1.0
    elif metric == 'bleu':
        y_max = 65  # Increased from 55 to accommodate high scores
    elif metric in ['rouge1', 'rouge2', 'rougeL']:
        y_max = 1.0
    elif metric == 'quality_score':
        y_max = 0.65
    else:
        # Auto-scale based on data
        all_values = []
        for data in [xx_to_eng_data, eng_to_xx_data, averages_data]:
            for model_data in data.values():
                all_values.extend(model_data)
        y_max = max(all_values) * 1.1 if all_values else 1.0

    # Format metric name for display
    metric_display = metric.upper() if metric in ['bleu', 'chrf', 'cer', 'wer'] else metric.replace('_', ' ').title()

    # Create bars for xx_to_eng (using first 2 columns)
    if xx_to_eng:
        ax1 = plt.subplot(gs[0, 0:2])
        for i, (model_name, color) in enumerate(zip(model_names, colors)):
            if model_name in xx_to_eng_data:
                ax1.bar(xx_to_eng_indices + i*bar_width, xx_to_eng_data[model_name],
                        bar_width, alpha=opacity, color=color, label=model_name)

        ax1.set_xlabel('Translation Direction')
        ax1.set_ylabel(f'{metric_display} Score')
        ax1.set_title(f'XX→English {metric_display} Performance')
        ax1.set_xticks(xx_to_eng_indices + bar_width)
        ax1.set_xticklabels([format_label(label) for label in xx_to_eng], rotation=45, ha='right')
        ax1.set_ylim(0, y_max)
        ax1.grid(axis='y', linestyle='--', alpha=0.7)

    # Create bars for eng_to_xx (using next 2 columns)
    if eng_to_xx:
        ax2 = plt.subplot(gs[0, 2:4])
        for i, (model_name, color) in enumerate(zip(model_names, colors)):
            if model_name in eng_to_xx_data:
                ax2.bar(eng_to_xx_indices + i*bar_width, eng_to_xx_data[model_name],
                        bar_width, alpha=opacity, color=color, label=model_name)

        ax2.set_xlabel('Translation Direction')
        ax2.set_ylabel(f'{metric_display} Score')
        ax2.set_title(f'English→XX {metric_display} Performance')
        ax2.set_xticks(eng_to_xx_indices + bar_width)
        ax2.set_xticklabels([format_label(label) for label in eng_to_xx], rotation=45, ha='right')
        ax2.set_ylim(0, y_max)
        ax2.grid(axis='y', linestyle='--', alpha=0.7)

    # Create bars for averages (using last column)
    ax3 = plt.subplot(gs[0, 4])
    for i, (model_name, color) in enumerate(zip(model_names, colors)):
        if model_name in averages_data:
            ax3.bar(avg_index + i*bar_width, averages_data[model_name],
                    bar_width, alpha=opacity, color=color, label=model_name)

    ax3.set_xlabel('Overall')
    ax3.set_ylabel(f'{metric_display} Score')
    ax3.set_title(f'Average {metric_display}')
    ax3.set_xticks(avg_index + bar_width)
    ax3.set_xticklabels(['Average'])
    ax3.set_ylim(0, y_max)
    ax3.grid(axis='y', linestyle='--', alpha=0.7)
    ax3.legend()

    # Add note for metrics where lower is better
    if metric in ['cer', 'wer']:
        plt.figtext(0.5, 0.01, "Note: Lower values indicate better performance for this metric",
                   ha='center', fontsize=12, style='italic')

    # Add an overall title and adjust layout
    model_list = ' vs '.join(model_names)
    plt.suptitle(f'{metric_display} Score Comparison: {model_list}', fontsize=16, y=0.98)
    plt.tight_layout(rect=[0, 0.02, 1, 0.95])

    return fig

def create_summary_metrics_plot(leaderboard_df: pd.DataFrame) -> plt.Figure:
    """Create a summary plot showing multiple metrics for top models."""
    
    if leaderboard_df.empty:
        fig, ax = plt.subplots(figsize=(10, 6))
        ax.text(0.5, 0.5, 'No data available', ha='center', va='center', 
                transform=ax.transAxes, fontsize=16)
        return fig
    
    # Select top 5 models by quality score
    top_models = leaderboard_df.nlargest(5, 'quality_score')
    
    # Metrics to display
    metrics = ['bleu', 'chrf', 'quality_score']
    metric_labels = ['BLEU', 'ChrF', 'Quality Score']
    
    fig, axes = plt.subplots(1, 3, figsize=(15, 6))
    
    for i, (metric, label) in enumerate(zip(metrics, metric_labels)):
        ax = axes[i]
        
        # Sort by current metric
        sorted_models = top_models.sort_values(metric, ascending=True)
        
        # Create horizontal bar chart
        bars = ax.barh(range(len(sorted_models)), sorted_models[metric], 
                      color=plt.cm.viridis(np.linspace(0, 1, len(sorted_models))))
        
        ax.set_yticks(range(len(sorted_models)))
        ax.set_yticklabels(sorted_models['model_display_name'])
        ax.set_xlabel(f'{label} Score')
        ax.set_title(f'Top Models - {label}')
        ax.grid(axis='x', linestyle='--', alpha=0.7)
        
        # Add value labels
        for j, (bar, value) in enumerate(zip(bars, sorted_models[metric])):
            ax.text(value + value*0.01, bar.get_y() + bar.get_height()/2, 
                    f'{value:.3f}', ha='left', va='center', fontsize=10)
    
    plt.tight_layout()
    return fig