Spaces:
Running
Running
File size: 23,280 Bytes
1abade4 b78ec70 a411078 fb1cc27 a411078 b78ec70 a411078 b78ec70 a411078 fb1cc27 a411078 b78ec70 fa045d5 b78ec70 a411078 b78ec70 1abade4 a411078 1abade4 a411078 b78ec70 a411078 fa045d5 fb1cc27 b78ec70 a411078 fa045d5 a411078 fa045d5 a411078 fb1cc27 fa045d5 fb1cc27 a411078 fb1cc27 fa045d5 b78ec70 a411078 fb1cc27 a411078 fa045d5 fb1cc27 fa045d5 a411078 fb1cc27 a411078 fa045d5 a411078 fa045d5 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 fa045d5 b78ec70 a411078 fb1cc27 fa045d5 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 fa045d5 a411078 fa045d5 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 fa045d5 a411078 fb1cc27 fa045d5 a411078 fb1cc27 a411078 fa045d5 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 fa045d5 a411078 fa045d5 a411078 fa045d5 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 fa045d5 fb1cc27 fa045d5 fb1cc27 fa045d5 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 fa045d5 fb1cc27 fa045d5 a411078 fa045d5 a411078 fa045d5 a411078 fa045d5 fb1cc27 fa045d5 a411078 fb1cc27 fa045d5 a411078 fb1cc27 fa045d5 a411078 fb1cc27 a411078 fa045d5 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 b78ec70 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fa045d5 fb1cc27 a411078 fa045d5 fb1cc27 a411078 fb1cc27 fa045d5 fb1cc27 a411078 fb1cc27 a411078 fa045d5 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fa045d5 a411078 fa045d5 fb1cc27 fa045d5 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
# src/utils.py
import re
import datetime
import pandas as pd
import numpy as np
from typing import Dict, List, Tuple, Set, Optional, Union
from scipy import stats
from config import (
ALL_UG40_LANGUAGES,
GOOGLE_SUPPORTED_LANGUAGES,
LANGUAGE_NAMES,
EVALUATION_TRACKS,
MODEL_CATEGORIES,
STATISTICAL_CONFIG,
METRICS_CONFIG,
SAMPLE_SIZE_RECOMMENDATIONS,
)
def get_all_language_pairs() -> List[Tuple[str, str]]:
"""Get all possible UG40 language pairs."""
pairs = []
for src in ALL_UG40_LANGUAGES:
for tgt in ALL_UG40_LANGUAGES:
if src != tgt:
pairs.append((src, tgt))
return pairs
def get_google_comparable_pairs() -> List[Tuple[str, str]]:
"""Get language pairs that can be compared with Google Translate."""
pairs = []
for src in GOOGLE_SUPPORTED_LANGUAGES:
for tgt in GOOGLE_SUPPORTED_LANGUAGES:
if src != tgt:
pairs.append((src, tgt))
return pairs
def get_track_language_pairs(track: str) -> List[Tuple[str, str]]:
"""Get language pairs for a specific evaluation track."""
if track not in EVALUATION_TRACKS:
return []
track_languages = EVALUATION_TRACKS[track]["languages"]
pairs = []
for src in track_languages:
for tgt in track_languages:
if src != tgt:
pairs.append((src, tgt))
return pairs
def format_language_pair(src: str, tgt: str) -> str:
"""Format language pair for display."""
src_name = LANGUAGE_NAMES.get(src, src.upper())
tgt_name = LANGUAGE_NAMES.get(tgt, tgt.upper())
return f"{src_name} → {tgt_name}"
def validate_language_code(lang: str) -> bool:
"""Validate if language code is supported."""
return lang in ALL_UG40_LANGUAGES
def create_submission_id() -> str:
"""Create unique submission ID with timestamp and random component."""
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
random_suffix = str(np.random.randint(1000, 9999))
return f"sub_{timestamp}_{random_suffix}"
def sanitize_model_name(name: str) -> str:
"""Sanitize model name for display and storage with enhanced validation."""
if not name or not isinstance(name, str):
return "Anonymous_Model"
# Remove special characters, limit length
name = re.sub(r"[^\w\-.]", "_", name.strip())
# Remove multiple consecutive underscores
name = re.sub(r"_+", "_", name)
# Remove leading/trailing underscores
name = name.strip("_")
# Ensure minimum length
if len(name) < 3:
name = f"Model_{name}"
# Check for reserved names
reserved_names = ["admin", "test", "baseline", "google", "system"]
if name.lower() in reserved_names:
name = f"User_{name}"
return name[:50] # Limit to 50 characters
def format_metric_value(value: float, metric: str, include_ci: bool = False,
ci_lower: float = None, ci_upper: float = None) -> str:
"""Format metric value for display with optional confidence intervals."""
if pd.isna(value) or value is None:
return "N/A"
try:
precision = METRICS_CONFIG["display_precision"]
if metric == "coverage_rate":
formatted = f"{value:.{precision}%}"
elif metric in ["bleu"]:
formatted = f"{value:.2f}"
elif metric in ["cer", "wer"] and value > 1:
# Cap error rates at 1.0 for display
formatted = f"{min(value, 1.0):.{precision}f}"
else:
formatted = f"{value:.{precision}f}"
# Add confidence interval if requested
if include_ci and ci_lower is not None and ci_upper is not None:
ci_str = f" [{ci_lower:.{precision}f}, {ci_upper:.{precision}f}]"
formatted += ci_str
return formatted
except (ValueError, TypeError):
return str(value)
def calculate_effect_size(values1: List[float], values2: List[float]) -> float:
"""Calculate Cohen's d effect size between two groups."""
if len(values1) < 2 or len(values2) < 2:
return 0.0
try:
values1 = np.array(values1)
values2 = np.array(values2)
# Remove NaN values
values1 = values1[~np.isnan(values1)]
values2 = values2[~np.isnan(values2)]
if len(values1) < 2 or len(values2) < 2:
return 0.0
# Calculate pooled standard deviation
n1, n2 = len(values1), len(values2)
pooled_std = np.sqrt(
((n1 - 1) * np.var(values1, ddof=1) + (n2 - 1) * np.var(values2, ddof=1))
/ (n1 + n2 - 2)
)
if pooled_std == 0:
return 0.0
# Cohen's d
effect_size = (np.mean(values1) - np.mean(values2)) / pooled_std
return abs(effect_size)
except Exception:
return 0.0
def interpret_effect_size(effect_size: float) -> str:
"""Interpret effect size according to Cohen's conventions."""
thresholds = STATISTICAL_CONFIG["effect_size_thresholds"]
if effect_size < thresholds["small"]:
return "negligible"
elif effect_size < thresholds["medium"]:
return "small"
elif effect_size < thresholds["large"]:
return "medium"
else:
return "large"
def calculate_statistical_power(
effect_size: float, n1: int, n2: int, alpha: float = 0.05
) -> float:
"""Estimate statistical power for given effect size and sample sizes."""
if n1 < 2 or n2 < 2:
return 0.0
try:
# Simplified power calculation using t-test
# This is an approximation
df = n1 + n2 - 2
pooled_se = np.sqrt((1/n1) + (1/n2))
# Critical t-value
t_critical = stats.t.ppf(1 - alpha/2, df)
# Non-centrality parameter
ncp = effect_size / pooled_se
# Power (approximate)
power = 1 - stats.t.cdf(t_critical, df, loc=ncp) + stats.t.cdf(-t_critical, df, loc=ncp)
return min(1.0, max(0.0, power))
except Exception:
return 0.0
def get_track_statistics(test_data: pd.DataFrame) -> Dict[str, Dict]:
"""Get comprehensive statistics about test data coverage for each track."""
track_stats = {}
for track_name, track_config in EVALUATION_TRACKS.items():
track_languages = track_config["languages"]
# Filter test data to track languages
track_data = test_data[
(test_data["source_language"].isin(track_languages)) &
(test_data["target_language"].isin(track_languages))
]
if track_data.empty:
track_stats[track_name] = {
"total_samples": 0,
"language_pairs": 0,
"samples_per_pair": {},
"coverage_matrix": {},
"adequacy_assessment": "insufficient",
}
continue
# Calculate pair-wise statistics
pair_counts = {}
for src in track_languages:
for tgt in track_languages:
if src == tgt:
continue
pair_data = track_data[
(track_data["source_language"] == src) &
(track_data["target_language"] == tgt)
]
pair_key = f"{src}_to_{tgt}"
pair_counts[pair_key] = len(pair_data)
# Calculate adequacy
min_required = track_config["min_samples_per_pair"]
adequate_pairs = sum(1 for count in pair_counts.values() if count >= min_required)
total_possible_pairs = len(track_languages) * (len(track_languages) - 1)
adequacy_rate = adequate_pairs / max(total_possible_pairs, 1)
if adequacy_rate >= 0.8:
adequacy = "excellent"
elif adequacy_rate >= 0.6:
adequacy = "good"
elif adequacy_rate >= 0.4:
adequacy = "fair"
else:
adequacy = "insufficient"
track_stats[track_name] = {
"total_samples": len(track_data),
"language_pairs": len([k for k, v in pair_counts.items() if v > 0]),
"samples_per_pair": pair_counts,
"coverage_matrix": pair_counts,
"adequacy_assessment": adequacy,
"adequacy_rate": adequacy_rate,
"min_samples_per_pair": min_required,
}
return track_stats
def validate_submission_completeness_scientific(
predictions: pd.DataFrame, test_set: pd.DataFrame, track: str = None
) -> Dict:
"""Enhanced validation with track-specific analysis."""
if predictions.empty or test_set.empty:
return {
"is_complete": False,
"missing_count": len(test_set) if not test_set.empty else 0,
"extra_count": len(predictions) if not predictions.empty else 0,
"missing_ids": [],
"coverage": 0.0,
"track_analysis": {},
}
# If track specified, filter to track languages
if track and track in EVALUATION_TRACKS:
track_languages = EVALUATION_TRACKS[track]["languages"]
test_set = test_set[
(test_set["source_language"].isin(track_languages)) &
(test_set["target_language"].isin(track_languages))
]
try:
required_ids = set(test_set["sample_id"].astype(str))
provided_ids = set(predictions["sample_id"].astype(str))
missing_ids = required_ids - provided_ids
extra_ids = provided_ids - required_ids
matching_ids = provided_ids & required_ids
base_result = {
"is_complete": len(missing_ids) == 0,
"missing_count": len(missing_ids),
"extra_count": len(extra_ids),
"missing_ids": list(missing_ids)[:10],
"coverage": len(matching_ids) / len(required_ids) if required_ids else 0.0,
}
# Add track-specific analysis if requested
if track:
track_analysis = analyze_track_coverage(predictions, test_set, track)
base_result["track_analysis"] = track_analysis
return base_result
except Exception as e:
print(f"Error in submission completeness validation: {e}")
return {
"is_complete": False,
"missing_count": 0,
"extra_count": 0,
"missing_ids": [],
"coverage": 0.0,
"track_analysis": {},
}
def analyze_track_coverage(
predictions: pd.DataFrame, test_set: pd.DataFrame, track: str
) -> Dict:
"""Analyze coverage for a specific track."""
if track not in EVALUATION_TRACKS:
return {"error": f"Unknown track: {track}"}
track_config = EVALUATION_TRACKS[track]
track_languages = track_config["languages"]
# Filter test set to track languages
track_test_set = test_set[
(test_set["source_language"].isin(track_languages)) &
(test_set["target_language"].isin(track_languages))
]
if track_test_set.empty:
return {"error": f"No test data available for {track} track"}
# Merge with predictions
merged = track_test_set.merge(predictions, on="sample_id", how="left", suffixes=("", "_pred"))
# Analyze by language pair
pair_analysis = {}
for src in track_languages:
for tgt in track_languages:
if src == tgt:
continue
pair_data = merged[
(merged["source_language"] == src) &
(merged["target_language"] == tgt)
]
if len(pair_data) > 0:
covered = pair_data["prediction"].notna().sum()
pair_analysis[f"{src}_to_{tgt}"] = {
"total": len(pair_data),
"covered": covered,
"coverage_rate": covered / len(pair_data),
"meets_minimum": covered >= track_config["min_samples_per_pair"],
}
# Overall track statistics
total_pairs = len(pair_analysis)
adequate_pairs = sum(1 for info in pair_analysis.values() if info["meets_minimum"])
return {
"track_name": track_config["name"],
"total_language_pairs": total_pairs,
"adequate_pairs": adequate_pairs,
"adequacy_rate": adequate_pairs / max(total_pairs, 1),
"pair_analysis": pair_analysis,
"overall_adequate": adequate_pairs >= total_pairs * 0.8, # 80% of pairs adequate
}
def calculate_language_pair_coverage_scientific(
predictions: pd.DataFrame, test_set: pd.DataFrame
) -> Dict:
"""Calculate comprehensive language pair coverage with statistical metrics."""
if predictions.empty or test_set.empty:
return {}
try:
# Merge to get language info
merged = test_set.merge(predictions, on="sample_id", how="left", suffixes=("", "_pred"))
coverage = {}
for src in ALL_UG40_LANGUAGES:
for tgt in ALL_UG40_LANGUAGES:
if src == tgt:
continue
pair_data = merged[
(merged["source_language"] == src) &
(merged["target_language"] == tgt)
]
if len(pair_data) > 0:
predicted_count = pair_data["prediction"].notna().sum()
coverage_rate = predicted_count / len(pair_data)
# Determine which tracks include this pair
tracks_included = []
for track_name, track_config in EVALUATION_TRACKS.items():
if src in track_config["languages"] and tgt in track_config["languages"]:
tracks_included.append(track_name)
coverage[f"{src}_{tgt}"] = {
"total": len(pair_data),
"predicted": predicted_count,
"coverage": coverage_rate,
"display_name": format_language_pair(src, tgt),
"tracks_included": tracks_included,
"google_comparable": (
src in GOOGLE_SUPPORTED_LANGUAGES and
tgt in GOOGLE_SUPPORTED_LANGUAGES
),
"statistical_adequacy": {
track: predicted_count >= EVALUATION_TRACKS[track]["min_samples_per_pair"]
for track in tracks_included
},
}
return coverage
except Exception as e:
print(f"Error calculating language pair coverage: {e}")
return {}
def safe_divide(numerator: float, denominator: float, default: float = 0.0) -> float:
"""Safely divide two numbers, handling edge cases."""
try:
if denominator == 0 or pd.isna(denominator) or pd.isna(numerator):
return default
result = numerator / denominator
if pd.isna(result) or not np.isfinite(result):
return default
return float(result)
except (TypeError, ValueError, ZeroDivisionError):
return default
def clean_text_for_evaluation(text: str) -> str:
"""Clean text for evaluation, handling common encoding issues."""
if not isinstance(text, str):
return str(text) if text is not None else ""
# Remove extra whitespace
text = re.sub(r"\s+", " ", text.strip())
# Handle common encoding issues
text = text.replace("\u00a0", " ") # Non-breaking space
text = text.replace("\u2019", "'") # Right single quotation mark
text = text.replace("\u201c", '"') # Left double quotation mark
text = text.replace("\u201d", '"') # Right double quotation mark
return text
def get_model_summary_stats_scientific(model_results: Dict, track: str = None) -> Dict:
"""Extract comprehensive summary statistics from model evaluation results."""
if not model_results or "tracks" not in model_results:
return {}
tracks = model_results["tracks"]
# If specific track requested
if track and track in tracks:
track_data = tracks[track]
if track_data.get("error"):
return {"error": f"No valid data for {track} track"}
track_averages = track_data.get("track_averages", {})
track_statistics = track_data.get("track_statistics", {})
summary = track_data.get("summary", {})
stats = {
"track": track,
"track_name": EVALUATION_TRACKS[track]["name"],
"quality_score": track_averages.get("quality_score", 0.0),
"bleu": track_averages.get("bleu", 0.0),
"chrf": track_averages.get("chrf", 0.0),
"total_samples": summary.get("total_samples", 0),
"language_pairs": summary.get("language_pairs_evaluated", 0),
"statistical_adequacy": summary.get("total_samples", 0) >= 100, # Simple threshold
}
# Add confidence intervals if available
if "quality_score" in track_statistics:
quality_stats = track_statistics["quality_score"]
stats["confidence_interval"] = [
quality_stats.get("ci_lower", 0.0),
quality_stats.get("ci_upper", 0.0),
]
return stats
# Otherwise, return summary across all tracks
all_tracks_summary = {
"tracks_evaluated": len([t for t in tracks.values() if not t.get("error")]),
"total_tracks": len(EVALUATION_TRACKS),
"by_track": {},
}
for track_name, track_data in tracks.items():
if not track_data.get("error"):
track_averages = track_data.get("track_averages", {})
summary = track_data.get("summary", {})
all_tracks_summary["by_track"][track_name] = {
"quality_score": track_averages.get("quality_score", 0.0),
"samples": summary.get("total_samples", 0),
"pairs": summary.get("language_pairs_evaluated", 0),
}
return all_tracks_summary
def generate_model_identifier_scientific(
model_name: str, author: str, category: str
) -> str:
"""Generate a unique scientific identifier for a model."""
clean_name = sanitize_model_name(model_name)
clean_author = re.sub(r"[^\w\-]", "_", author.strip())[:20] if author else "Anonymous"
clean_category = category[:10] if category in MODEL_CATEGORIES else "community"
timestamp = datetime.datetime.now().strftime("%m%d_%H%M")
return f"{clean_category}_{clean_name}_{clean_author}_{timestamp}"
def validate_dataframe_structure_enhanced(
df: pd.DataFrame, required_columns: List[str], track: str = None
) -> Tuple[bool, List[str]]:
"""Enhanced DataFrame structure validation with track-specific checks."""
if df.empty:
return False, ["DataFrame is empty"]
issues = []
# Check required columns
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
issues.append(f"Missing columns: {', '.join(missing_columns)}")
# Check for track-specific requirements
if track and track in EVALUATION_TRACKS:
track_config = EVALUATION_TRACKS[track]
min_samples = track_config.get("min_samples_per_pair", 10)
# Check sample size adequacy
if len(df) < min_samples * 5: # At least 5 pairs worth of data
issues.append(f"Insufficient samples for {track} track (minimum ~{min_samples * 5})")
# Check data types
if "sample_id" in df.columns:
if not df["sample_id"].dtype == "object":
try:
df["sample_id"] = df["sample_id"].astype(str)
except Exception:
issues.append("Cannot convert sample_id to string")
return len(issues) == 0, issues
def format_duration(seconds: float) -> str:
"""Format duration in seconds to human-readable format."""
if seconds < 60:
return f"{seconds:.1f}s"
elif seconds < 3600:
return f"{seconds/60:.1f}m"
else:
return f"{seconds/3600:.1f}h"
def truncate_text(text: str, max_length: int = 100, suffix: str = "...") -> str:
"""Truncate text to specified length with suffix."""
if not isinstance(text, str):
text = str(text)
if len(text) <= max_length:
return text
return text[: max_length - len(suffix)] + suffix
def calculate_sample_size_recommendation(
desired_power: float = 0.8, effect_size: float = 0.5, alpha: float = 0.05
) -> int:
"""Calculate recommended sample size for statistical analysis."""
try:
# Simplified sample size calculation for t-test
# This is an approximation using Cohen's conventions
z_alpha = stats.norm.ppf(1 - alpha / 2)
z_beta = stats.norm.ppf(desired_power)
# Sample size per group
n_per_group = 2 * ((z_alpha + z_beta) / effect_size) ** 2
# Round up to nearest integer
return max(10, int(np.ceil(n_per_group)))
except Exception:
return 50 # Default fallback
def assess_model_category_appropriateness(
model_name: str, category: str, performance_data: Dict
) -> Dict:
"""Assess if the detected/assigned model category is appropriate."""
assessment = {
"category": category,
"appropriate": True,
"confidence": 1.0,
"recommendations": [],
}
# Check for category mismatches based on performance
if category == "baseline" and performance_data:
# Baselines shouldn't perform too well
quality_scores = []
for track_data in performance_data.get("tracks", {}).values():
if not track_data.get("error"):
quality_scores.append(track_data.get("track_averages", {}).get("quality_score", 0))
if quality_scores and max(quality_scores) > 0.7: # High performance for baseline
assessment["appropriate"] = False
assessment["confidence"] = 0.3
assessment["recommendations"].append(
"High performance suggests this might not be a baseline model"
)
# Check for commercial model expectations
if category == "commercial":
# Commercial models should have good Google-comparable performance
google_track = performance_data.get("tracks", {}).get("google_comparable", {})
if not google_track.get("error"):
quality = google_track.get("track_averages", {}).get("quality_score", 0)
if quality < 0.3: # Poor performance for commercial
assessment["recommendations"].append(
"Low performance unexpected for commercial systems"
)
return assessment |