File size: 23,280 Bytes
1abade4
 
 
b78ec70
a411078
 
 
 
 
 
 
 
 
 
 
fb1cc27
a411078
 
b78ec70
 
 
 
 
 
 
 
 
 
a411078
b78ec70
 
 
 
 
 
 
 
 
a411078
 
 
 
 
fb1cc27
a411078
 
 
 
 
 
 
 
 
b78ec70
 
fa045d5
 
b78ec70
 
a411078
b78ec70
 
 
1abade4
a411078
1abade4
a411078
 
 
 
 
b78ec70
 
a411078
fa045d5
 
fb1cc27
b78ec70
a411078
fa045d5
a411078
fa045d5
a411078
fb1cc27
fa045d5
 
 
fb1cc27
a411078
 
 
 
fb1cc27
fa045d5
b78ec70
a411078
fb1cc27
 
a411078
fa045d5
 
fb1cc27
fa045d5
a411078
fb1cc27
a411078
 
 
 
 
fa045d5
a411078
fa045d5
a411078
fb1cc27
a411078
 
 
 
fb1cc27
a411078
fb1cc27
fa045d5
 
b78ec70
a411078
 
 
 
 
fb1cc27
fa045d5
a411078
 
fb1cc27
a411078
 
 
fb1cc27
a411078
 
fb1cc27
a411078
 
 
 
 
 
fb1cc27
a411078
 
fb1cc27
a411078
 
 
fb1cc27
a411078
 
 
 
 
 
 
fb1cc27
a411078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb1cc27
a411078
 
 
 
fb1cc27
 
a411078
fb1cc27
 
a411078
 
fb1cc27
a411078
fb1cc27
 
a411078
fb1cc27
a411078
 
 
 
 
 
 
fb1cc27
a411078
 
fb1cc27
a411078
 
fb1cc27
 
a411078
fb1cc27
a411078
 
 
 
 
 
 
 
 
fb1cc27
a411078
 
 
 
 
 
fb1cc27
a411078
fb1cc27
 
a411078
fb1cc27
a411078
 
fb1cc27
a411078
 
fb1cc27
a411078
fb1cc27
a411078
fb1cc27
a411078
 
 
 
 
 
 
 
fb1cc27
a411078
 
 
 
 
 
 
 
 
fb1cc27
a411078
 
 
 
 
 
 
fb1cc27
fa045d5
 
a411078
 
 
 
 
 
fa045d5
fb1cc27
a411078
 
 
 
fb1cc27
 
a411078
fb1cc27
fa045d5
a411078
 
fb1cc27
fa045d5
 
a411078
fb1cc27
a411078
 
 
 
 
 
fa045d5
fb1cc27
a411078
 
 
 
fb1cc27
a411078
fb1cc27
fa045d5
a411078
fa045d5
a411078
 
 
 
 
 
fa045d5
 
a411078
 
 
 
 
fb1cc27
a411078
 
fb1cc27
a411078
 
fb1cc27
a411078
 
fb1cc27
 
a411078
fb1cc27
a411078
 
fb1cc27
a411078
fb1cc27
 
a411078
 
 
 
 
 
fb1cc27
a411078
fb1cc27
 
a411078
fb1cc27
a411078
 
 
 
 
 
 
 
fb1cc27
a411078
 
 
fb1cc27
a411078
 
 
 
 
 
fb1cc27
a411078
 
 
 
 
 
 
fb1cc27
fa045d5
 
fb1cc27
fa045d5
 
fb1cc27
 
fa045d5
 
 
a411078
 
fb1cc27
a411078
fb1cc27
 
a411078
fb1cc27
a411078
 
 
fb1cc27
a411078
 
 
fb1cc27
a411078
fb1cc27
a411078
 
 
 
 
 
 
fb1cc27
 
a411078
 
fb1cc27
a411078
 
 
fb1cc27
fa045d5
fb1cc27
fa045d5
 
 
 
a411078
fa045d5
 
 
 
 
 
a411078
fa045d5
 
 
 
 
a411078
fa045d5
 
 
 
fb1cc27
fa045d5
a411078
fb1cc27
fa045d5
a411078
 
 
 
fb1cc27
fa045d5
 
a411078
 
 
fb1cc27
a411078
fa045d5
fb1cc27
a411078
fb1cc27
a411078
 
 
 
 
fb1cc27
a411078
 
 
fb1cc27
a411078
 
 
 
 
 
 
 
fb1cc27
a411078
fb1cc27
a411078
 
 
 
 
 
 
fb1cc27
a411078
fb1cc27
a411078
 
 
 
 
b78ec70
fb1cc27
a411078
 
 
 
fb1cc27
a411078
 
 
 
 
fb1cc27
a411078
 
 
 
 
 
 
fa045d5
fb1cc27
a411078
fa045d5
fb1cc27
a411078
 
 
 
 
 
 
fb1cc27
fa045d5
 
fb1cc27
a411078
fb1cc27
a411078
fa045d5
 
a411078
fb1cc27
a411078
 
 
 
fb1cc27
a411078
 
fb1cc27
 
a411078
 
 
 
 
 
 
fb1cc27
a411078
 
fa045d5
 
 
 
 
 
 
 
 
 
a411078
fa045d5
 
 
 
fb1cc27
fa045d5
 
fb1cc27
a411078
 
 
 
 
 
 
fb1cc27
a411078
 
 
fb1cc27
a411078
 
fb1cc27
a411078
 
fb1cc27
a411078
 
fb1cc27
a411078
 
 
 
 
 
 
 
fb1cc27
a411078
 
 
 
 
 
fb1cc27
a411078
 
 
 
 
 
fb1cc27
 
 
a411078
 
 
 
 
fb1cc27
a411078
 
 
 
 
 
 
 
 
 
fb1cc27
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
# src/utils.py
import re
import datetime
import pandas as pd
import numpy as np
from typing import Dict, List, Tuple, Set, Optional, Union
from scipy import stats
from config import (
    ALL_UG40_LANGUAGES,
    GOOGLE_SUPPORTED_LANGUAGES,
    LANGUAGE_NAMES,
    EVALUATION_TRACKS,
    MODEL_CATEGORIES,
    STATISTICAL_CONFIG,
    METRICS_CONFIG,
    SAMPLE_SIZE_RECOMMENDATIONS,
)


def get_all_language_pairs() -> List[Tuple[str, str]]:
    """Get all possible UG40 language pairs."""
    pairs = []
    for src in ALL_UG40_LANGUAGES:
        for tgt in ALL_UG40_LANGUAGES:
            if src != tgt:
                pairs.append((src, tgt))
    return pairs


def get_google_comparable_pairs() -> List[Tuple[str, str]]:
    """Get language pairs that can be compared with Google Translate."""
    pairs = []
    for src in GOOGLE_SUPPORTED_LANGUAGES:
        for tgt in GOOGLE_SUPPORTED_LANGUAGES:
            if src != tgt:
                pairs.append((src, tgt))
    return pairs


def get_track_language_pairs(track: str) -> List[Tuple[str, str]]:
    """Get language pairs for a specific evaluation track."""
    if track not in EVALUATION_TRACKS:
        return []
    
    track_languages = EVALUATION_TRACKS[track]["languages"]
    pairs = []
    for src in track_languages:
        for tgt in track_languages:
            if src != tgt:
                pairs.append((src, tgt))
    return pairs


def format_language_pair(src: str, tgt: str) -> str:
    """Format language pair for display."""
    src_name = LANGUAGE_NAMES.get(src, src.upper())
    tgt_name = LANGUAGE_NAMES.get(tgt, tgt.upper())
    return f"{src_name}{tgt_name}"


def validate_language_code(lang: str) -> bool:
    """Validate if language code is supported."""
    return lang in ALL_UG40_LANGUAGES


def create_submission_id() -> str:
    """Create unique submission ID with timestamp and random component."""
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    random_suffix = str(np.random.randint(1000, 9999))
    return f"sub_{timestamp}_{random_suffix}"


def sanitize_model_name(name: str) -> str:
    """Sanitize model name for display and storage with enhanced validation."""
    if not name or not isinstance(name, str):
        return "Anonymous_Model"
    
    # Remove special characters, limit length
    name = re.sub(r"[^\w\-.]", "_", name.strip())
    # Remove multiple consecutive underscores
    name = re.sub(r"_+", "_", name)
    # Remove leading/trailing underscores
    name = name.strip("_")
    
    # Ensure minimum length
    if len(name) < 3:
        name = f"Model_{name}"
    
    # Check for reserved names
    reserved_names = ["admin", "test", "baseline", "google", "system"]
    if name.lower() in reserved_names:
        name = f"User_{name}"
    
    return name[:50]  # Limit to 50 characters


def format_metric_value(value: float, metric: str, include_ci: bool = False, 
                       ci_lower: float = None, ci_upper: float = None) -> str:
    """Format metric value for display with optional confidence intervals."""
    if pd.isna(value) or value is None:
        return "N/A"
    
    try:
        precision = METRICS_CONFIG["display_precision"]
        
        if metric == "coverage_rate":
            formatted = f"{value:.{precision}%}"
        elif metric in ["bleu"]:
            formatted = f"{value:.2f}"
        elif metric in ["cer", "wer"] and value > 1:
            # Cap error rates at 1.0 for display
            formatted = f"{min(value, 1.0):.{precision}f}"
        else:
            formatted = f"{value:.{precision}f}"
        
        # Add confidence interval if requested
        if include_ci and ci_lower is not None and ci_upper is not None:
            ci_str = f" [{ci_lower:.{precision}f}, {ci_upper:.{precision}f}]"
            formatted += ci_str
        
        return formatted
        
    except (ValueError, TypeError):
        return str(value)


def calculate_effect_size(values1: List[float], values2: List[float]) -> float:
    """Calculate Cohen's d effect size between two groups."""
    if len(values1) < 2 or len(values2) < 2:
        return 0.0
    
    try:
        values1 = np.array(values1)
        values2 = np.array(values2)
        
        # Remove NaN values
        values1 = values1[~np.isnan(values1)]
        values2 = values2[~np.isnan(values2)]
        
        if len(values1) < 2 or len(values2) < 2:
            return 0.0
        
        # Calculate pooled standard deviation
        n1, n2 = len(values1), len(values2)
        pooled_std = np.sqrt(
            ((n1 - 1) * np.var(values1, ddof=1) + (n2 - 1) * np.var(values2, ddof=1))
            / (n1 + n2 - 2)
        )
        
        if pooled_std == 0:
            return 0.0
        
        # Cohen's d
        effect_size = (np.mean(values1) - np.mean(values2)) / pooled_std
        return abs(effect_size)
        
    except Exception:
        return 0.0


def interpret_effect_size(effect_size: float) -> str:
    """Interpret effect size according to Cohen's conventions."""
    thresholds = STATISTICAL_CONFIG["effect_size_thresholds"]
    
    if effect_size < thresholds["small"]:
        return "negligible"
    elif effect_size < thresholds["medium"]:
        return "small"
    elif effect_size < thresholds["large"]:
        return "medium"
    else:
        return "large"


def calculate_statistical_power(
    effect_size: float, n1: int, n2: int, alpha: float = 0.05
) -> float:
    """Estimate statistical power for given effect size and sample sizes."""
    if n1 < 2 or n2 < 2:
        return 0.0
    
    try:
        # Simplified power calculation using t-test
        # This is an approximation
        df = n1 + n2 - 2
        pooled_se = np.sqrt((1/n1) + (1/n2))
        
        # Critical t-value
        t_critical = stats.t.ppf(1 - alpha/2, df)
        
        # Non-centrality parameter
        ncp = effect_size / pooled_se
        
        # Power (approximate)
        power = 1 - stats.t.cdf(t_critical, df, loc=ncp) + stats.t.cdf(-t_critical, df, loc=ncp)
        
        return min(1.0, max(0.0, power))
        
    except Exception:
        return 0.0


def get_track_statistics(test_data: pd.DataFrame) -> Dict[str, Dict]:
    """Get comprehensive statistics about test data coverage for each track."""
    track_stats = {}
    
    for track_name, track_config in EVALUATION_TRACKS.items():
        track_languages = track_config["languages"]
        
        # Filter test data to track languages
        track_data = test_data[
            (test_data["source_language"].isin(track_languages)) &
            (test_data["target_language"].isin(track_languages))
        ]
        
        if track_data.empty:
            track_stats[track_name] = {
                "total_samples": 0,
                "language_pairs": 0,
                "samples_per_pair": {},
                "coverage_matrix": {},
                "adequacy_assessment": "insufficient",
            }
            continue
        
        # Calculate pair-wise statistics
        pair_counts = {}
        for src in track_languages:
            for tgt in track_languages:
                if src == tgt:
                    continue
                
                pair_data = track_data[
                    (track_data["source_language"] == src) &
                    (track_data["target_language"] == tgt)
                ]
                
                pair_key = f"{src}_to_{tgt}"
                pair_counts[pair_key] = len(pair_data)
        
        # Calculate adequacy
        min_required = track_config["min_samples_per_pair"]
        adequate_pairs = sum(1 for count in pair_counts.values() if count >= min_required)
        total_possible_pairs = len(track_languages) * (len(track_languages) - 1)
        
        adequacy_rate = adequate_pairs / max(total_possible_pairs, 1)
        
        if adequacy_rate >= 0.8:
            adequacy = "excellent"
        elif adequacy_rate >= 0.6:
            adequacy = "good"
        elif adequacy_rate >= 0.4:
            adequacy = "fair"
        else:
            adequacy = "insufficient"
        
        track_stats[track_name] = {
            "total_samples": len(track_data),
            "language_pairs": len([k for k, v in pair_counts.items() if v > 0]),
            "samples_per_pair": pair_counts,
            "coverage_matrix": pair_counts,
            "adequacy_assessment": adequacy,
            "adequacy_rate": adequacy_rate,
            "min_samples_per_pair": min_required,
        }
    
    return track_stats


def validate_submission_completeness_scientific(
    predictions: pd.DataFrame, test_set: pd.DataFrame, track: str = None
) -> Dict:
    """Enhanced validation with track-specific analysis."""
    
    if predictions.empty or test_set.empty:
        return {
            "is_complete": False,
            "missing_count": len(test_set) if not test_set.empty else 0,
            "extra_count": len(predictions) if not predictions.empty else 0,
            "missing_ids": [],
            "coverage": 0.0,
            "track_analysis": {},
        }
    
    # If track specified, filter to track languages
    if track and track in EVALUATION_TRACKS:
        track_languages = EVALUATION_TRACKS[track]["languages"]
        test_set = test_set[
            (test_set["source_language"].isin(track_languages)) &
            (test_set["target_language"].isin(track_languages))
        ]
    
    try:
        required_ids = set(test_set["sample_id"].astype(str))
        provided_ids = set(predictions["sample_id"].astype(str))
        
        missing_ids = required_ids - provided_ids
        extra_ids = provided_ids - required_ids
        matching_ids = provided_ids & required_ids
        
        base_result = {
            "is_complete": len(missing_ids) == 0,
            "missing_count": len(missing_ids),
            "extra_count": len(extra_ids),
            "missing_ids": list(missing_ids)[:10],
            "coverage": len(matching_ids) / len(required_ids) if required_ids else 0.0,
        }
        
        # Add track-specific analysis if requested
        if track:
            track_analysis = analyze_track_coverage(predictions, test_set, track)
            base_result["track_analysis"] = track_analysis
        
        return base_result
        
    except Exception as e:
        print(f"Error in submission completeness validation: {e}")
        return {
            "is_complete": False,
            "missing_count": 0,
            "extra_count": 0,
            "missing_ids": [],
            "coverage": 0.0,
            "track_analysis": {},
        }


def analyze_track_coverage(
    predictions: pd.DataFrame, test_set: pd.DataFrame, track: str
) -> Dict:
    """Analyze coverage for a specific track."""
    
    if track not in EVALUATION_TRACKS:
        return {"error": f"Unknown track: {track}"}
    
    track_config = EVALUATION_TRACKS[track]
    track_languages = track_config["languages"]
    
    # Filter test set to track languages
    track_test_set = test_set[
        (test_set["source_language"].isin(track_languages)) &
        (test_set["target_language"].isin(track_languages))
    ]
    
    if track_test_set.empty:
        return {"error": f"No test data available for {track} track"}
    
    # Merge with predictions
    merged = track_test_set.merge(predictions, on="sample_id", how="left", suffixes=("", "_pred"))
    
    # Analyze by language pair
    pair_analysis = {}
    for src in track_languages:
        for tgt in track_languages:
            if src == tgt:
                continue
            
            pair_data = merged[
                (merged["source_language"] == src) &
                (merged["target_language"] == tgt)
            ]
            
            if len(pair_data) > 0:
                covered = pair_data["prediction"].notna().sum()
                pair_analysis[f"{src}_to_{tgt}"] = {
                    "total": len(pair_data),
                    "covered": covered,
                    "coverage_rate": covered / len(pair_data),
                    "meets_minimum": covered >= track_config["min_samples_per_pair"],
                }
    
    # Overall track statistics
    total_pairs = len(pair_analysis)
    adequate_pairs = sum(1 for info in pair_analysis.values() if info["meets_minimum"])
    
    return {
        "track_name": track_config["name"],
        "total_language_pairs": total_pairs,
        "adequate_pairs": adequate_pairs,
        "adequacy_rate": adequate_pairs / max(total_pairs, 1),
        "pair_analysis": pair_analysis,
        "overall_adequate": adequate_pairs >= total_pairs * 0.8,  # 80% of pairs adequate
    }


def calculate_language_pair_coverage_scientific(
    predictions: pd.DataFrame, test_set: pd.DataFrame
) -> Dict:
    """Calculate comprehensive language pair coverage with statistical metrics."""
    
    if predictions.empty or test_set.empty:
        return {}
    
    try:
        # Merge to get language info
        merged = test_set.merge(predictions, on="sample_id", how="left", suffixes=("", "_pred"))
        
        coverage = {}
        for src in ALL_UG40_LANGUAGES:
            for tgt in ALL_UG40_LANGUAGES:
                if src == tgt:
                    continue
                
                pair_data = merged[
                    (merged["source_language"] == src) &
                    (merged["target_language"] == tgt)
                ]
                
                if len(pair_data) > 0:
                    predicted_count = pair_data["prediction"].notna().sum()
                    coverage_rate = predicted_count / len(pair_data)
                    
                    # Determine which tracks include this pair
                    tracks_included = []
                    for track_name, track_config in EVALUATION_TRACKS.items():
                        if src in track_config["languages"] and tgt in track_config["languages"]:
                            tracks_included.append(track_name)
                    
                    coverage[f"{src}_{tgt}"] = {
                        "total": len(pair_data),
                        "predicted": predicted_count,
                        "coverage": coverage_rate,
                        "display_name": format_language_pair(src, tgt),
                        "tracks_included": tracks_included,
                        "google_comparable": (
                            src in GOOGLE_SUPPORTED_LANGUAGES and
                            tgt in GOOGLE_SUPPORTED_LANGUAGES
                        ),
                        "statistical_adequacy": {
                            track: predicted_count >= EVALUATION_TRACKS[track]["min_samples_per_pair"]
                            for track in tracks_included
                        },
                    }
        
        return coverage
        
    except Exception as e:
        print(f"Error calculating language pair coverage: {e}")
        return {}


def safe_divide(numerator: float, denominator: float, default: float = 0.0) -> float:
    """Safely divide two numbers, handling edge cases."""
    try:
        if denominator == 0 or pd.isna(denominator) or pd.isna(numerator):
            return default
        result = numerator / denominator
        if pd.isna(result) or not np.isfinite(result):
            return default
        return float(result)
    except (TypeError, ValueError, ZeroDivisionError):
        return default


def clean_text_for_evaluation(text: str) -> str:
    """Clean text for evaluation, handling common encoding issues."""
    if not isinstance(text, str):
        return str(text) if text is not None else ""
    
    # Remove extra whitespace
    text = re.sub(r"\s+", " ", text.strip())
    
    # Handle common encoding issues
    text = text.replace("\u00a0", " ")  # Non-breaking space
    text = text.replace("\u2019", "'")  # Right single quotation mark
    text = text.replace("\u201c", '"')  # Left double quotation mark
    text = text.replace("\u201d", '"')  # Right double quotation mark
    
    return text


def get_model_summary_stats_scientific(model_results: Dict, track: str = None) -> Dict:
    """Extract comprehensive summary statistics from model evaluation results."""
    
    if not model_results or "tracks" not in model_results:
        return {}
    
    tracks = model_results["tracks"]
    
    # If specific track requested
    if track and track in tracks:
        track_data = tracks[track]
        if track_data.get("error"):
            return {"error": f"No valid data for {track} track"}
        
        track_averages = track_data.get("track_averages", {})
        track_statistics = track_data.get("track_statistics", {})
        summary = track_data.get("summary", {})
        
        stats = {
            "track": track,
            "track_name": EVALUATION_TRACKS[track]["name"],
            "quality_score": track_averages.get("quality_score", 0.0),
            "bleu": track_averages.get("bleu", 0.0),
            "chrf": track_averages.get("chrf", 0.0),
            "total_samples": summary.get("total_samples", 0),
            "language_pairs": summary.get("language_pairs_evaluated", 0),
            "statistical_adequacy": summary.get("total_samples", 0) >= 100,  # Simple threshold
        }
        
        # Add confidence intervals if available
        if "quality_score" in track_statistics:
            quality_stats = track_statistics["quality_score"]
            stats["confidence_interval"] = [
                quality_stats.get("ci_lower", 0.0),
                quality_stats.get("ci_upper", 0.0),
            ]
        
        return stats
    
    # Otherwise, return summary across all tracks
    all_tracks_summary = {
        "tracks_evaluated": len([t for t in tracks.values() if not t.get("error")]),
        "total_tracks": len(EVALUATION_TRACKS),
        "by_track": {},
    }
    
    for track_name, track_data in tracks.items():
        if not track_data.get("error"):
            track_averages = track_data.get("track_averages", {})
            summary = track_data.get("summary", {})
            
            all_tracks_summary["by_track"][track_name] = {
                "quality_score": track_averages.get("quality_score", 0.0),
                "samples": summary.get("total_samples", 0),
                "pairs": summary.get("language_pairs_evaluated", 0),
            }
    
    return all_tracks_summary


def generate_model_identifier_scientific(
    model_name: str, author: str, category: str
) -> str:
    """Generate a unique scientific identifier for a model."""
    clean_name = sanitize_model_name(model_name)
    clean_author = re.sub(r"[^\w\-]", "_", author.strip())[:20] if author else "Anonymous"
    clean_category = category[:10] if category in MODEL_CATEGORIES else "community"
    timestamp = datetime.datetime.now().strftime("%m%d_%H%M")
    
    return f"{clean_category}_{clean_name}_{clean_author}_{timestamp}"


def validate_dataframe_structure_enhanced(
    df: pd.DataFrame, required_columns: List[str], track: str = None
) -> Tuple[bool, List[str]]:
    """Enhanced DataFrame structure validation with track-specific checks."""
    
    if df.empty:
        return False, ["DataFrame is empty"]
    
    issues = []
    
    # Check required columns
    missing_columns = [col for col in required_columns if col not in df.columns]
    if missing_columns:
        issues.append(f"Missing columns: {', '.join(missing_columns)}")
    
    # Check for track-specific requirements
    if track and track in EVALUATION_TRACKS:
        track_config = EVALUATION_TRACKS[track]
        min_samples = track_config.get("min_samples_per_pair", 10)
        
        # Check sample size adequacy
        if len(df) < min_samples * 5:  # At least 5 pairs worth of data
            issues.append(f"Insufficient samples for {track} track (minimum ~{min_samples * 5})")
    
    # Check data types
    if "sample_id" in df.columns:
        if not df["sample_id"].dtype == "object":
            try:
                df["sample_id"] = df["sample_id"].astype(str)
            except Exception:
                issues.append("Cannot convert sample_id to string")
    
    return len(issues) == 0, issues


def format_duration(seconds: float) -> str:
    """Format duration in seconds to human-readable format."""
    if seconds < 60:
        return f"{seconds:.1f}s"
    elif seconds < 3600:
        return f"{seconds/60:.1f}m"
    else:
        return f"{seconds/3600:.1f}h"


def truncate_text(text: str, max_length: int = 100, suffix: str = "...") -> str:
    """Truncate text to specified length with suffix."""
    if not isinstance(text, str):
        text = str(text)
    
    if len(text) <= max_length:
        return text
    
    return text[: max_length - len(suffix)] + suffix


def calculate_sample_size_recommendation(
    desired_power: float = 0.8, effect_size: float = 0.5, alpha: float = 0.05
) -> int:
    """Calculate recommended sample size for statistical analysis."""
    
    try:
        # Simplified sample size calculation for t-test
        # This is an approximation using Cohen's conventions
        
        z_alpha = stats.norm.ppf(1 - alpha / 2)
        z_beta = stats.norm.ppf(desired_power)
        
        # Sample size per group
        n_per_group = 2 * ((z_alpha + z_beta) / effect_size) ** 2
        
        # Round up to nearest integer
        return max(10, int(np.ceil(n_per_group)))
        
    except Exception:
        return 50  # Default fallback


def assess_model_category_appropriateness(
    model_name: str, category: str, performance_data: Dict
) -> Dict:
    """Assess if the detected/assigned model category is appropriate."""
    
    assessment = {
        "category": category,
        "appropriate": True,
        "confidence": 1.0,
        "recommendations": [],
    }
    
    # Check for category mismatches based on performance
    if category == "baseline" and performance_data:
        # Baselines shouldn't perform too well
        quality_scores = []
        for track_data in performance_data.get("tracks", {}).values():
            if not track_data.get("error"):
                quality_scores.append(track_data.get("track_averages", {}).get("quality_score", 0))
        
        if quality_scores and max(quality_scores) > 0.7:  # High performance for baseline
            assessment["appropriate"] = False
            assessment["confidence"] = 0.3
            assessment["recommendations"].append(
                "High performance suggests this might not be a baseline model"
            )
    
    # Check for commercial model expectations
    if category == "commercial":
        # Commercial models should have good Google-comparable performance
        google_track = performance_data.get("tracks", {}).get("google_comparable", {})
        if not google_track.get("error"):
            quality = google_track.get("track_averages", {}).get("quality_score", 0)
            if quality < 0.3:  # Poor performance for commercial
                assessment["recommendations"].append(
                    "Low performance unexpected for commercial systems"
                )
    
    return assessment