File size: 16,887 Bytes
423834f
 
 
 
 
 
 
 
 
 
 
 
 
6ff2c45
423834f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff2c45
423834f
 
 
 
 
 
6ff2c45
423834f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff2c45
423834f
 
 
6ff2c45
423834f
 
 
 
 
 
6ff2c45
 
 
 
 
 
 
 
 
 
 
 
 
423834f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff2c45
423834f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff2c45
 
 
 
 
 
 
 
 
 
 
 
 
423834f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff2c45
423834f
 
 
6ff2c45
 
423834f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff2c45
423834f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff2c45
423834f
 
 
 
6ff2c45
423834f
 
 
 
 
 
6ff2c45
423834f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff2c45
423834f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff2c45
 
 
423834f
 
6ff2c45
 
 
 
 
 
 
423834f
 
 
 
6ff2c45
423834f
 
 
6ff2c45
423834f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# src/evaluation.py
import pandas as pd
import numpy as np
from sacrebleu.metrics import BLEU, CHRF
from rouge_score import rouge_scorer
import Levenshtein
from collections import defaultdict
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from typing import Dict, List, Tuple
from config import ALL_UG40_LANGUAGES, GOOGLE_SUPPORTED_LANGUAGES, METRICS_CONFIG
from src.utils import get_all_language_pairs, get_google_comparable_pairs

def calculate_sentence_metrics(reference: str, prediction: str) -> Dict[str, float]:
    """Calculate all metrics for a single sentence pair - Fixed to match reference implementation."""
    
    # Handle empty predictions
    if not prediction or not isinstance(prediction, str):
        prediction = ""
    
    if not reference or not isinstance(reference, str):
        reference = ""
    
    # Normalize texts
    normalizer = BasicTextNormalizer()
    pred_norm = normalizer(prediction)
    ref_norm = normalizer(reference)
    
    metrics = {}
    
    # BLEU score (keep as 0-100 scale initially)
    try:
        bleu = BLEU(effective_order=True)
        metrics['bleu'] = bleu.sentence_score(pred_norm, [ref_norm]).score
    except:
        metrics['bleu'] = 0.0
    
    # ChrF score (normalize to 0-1)
    try:
        chrf = CHRF()
        metrics['chrf'] = chrf.sentence_score(pred_norm, [ref_norm]).score / 100.0
    except:
        metrics['chrf'] = 0.0
    
    # Character Error Rate (CER)
    try:
        if len(ref_norm) > 0:
            metrics['cer'] = Levenshtein.distance(ref_norm, pred_norm) / len(ref_norm)
        else:
            metrics['cer'] = 1.0 if len(pred_norm) > 0 else 0.0
    except:
        metrics['cer'] = 1.0
    
    # Word Error Rate (WER)
    try:
        ref_words = ref_norm.split()
        pred_words = pred_norm.split()
        if len(ref_words) > 0:
            metrics['wer'] = Levenshtein.distance(ref_words, pred_words) / len(ref_words)
        else:
            metrics['wer'] = 1.0 if len(pred_words) > 0 else 0.0
    except:
        metrics['wer'] = 1.0
    
    # Length ratio
    try:
        if len(ref_norm) > 0:
            metrics['len_ratio'] = len(pred_norm) / len(ref_norm)
        else:
            metrics['len_ratio'] = 1.0 if len(pred_norm) == 0 else float('inf')
    except:
        metrics['len_ratio'] = 1.0
    
    # ROUGE scores
    try:
        scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
        rouge_scores = scorer.score(ref_norm, pred_norm)
        
        metrics['rouge1'] = rouge_scores['rouge1'].fmeasure
        metrics['rouge2'] = rouge_scores['rouge2'].fmeasure
        metrics['rougeL'] = rouge_scores['rougeL'].fmeasure
    except:
        metrics['rouge1'] = 0.0
        metrics['rouge2'] = 0.0
        metrics['rougeL'] = 0.0
    
    # Quality score (composite metric) - Fixed to match reference
    try:
        quality_components = [
            metrics['bleu'] / 100.0,  # Normalize BLEU to 0-1
            metrics['chrf'],          # Already 0-1
            1.0 - min(metrics['cer'], 1.0),  # Invert error rates
            1.0 - min(metrics['wer'], 1.0),
            metrics['rouge1'],
            metrics['rougeL']
        ]
        metrics['quality_score'] = np.mean(quality_components)
    except Exception as e:
        # Fallback without ROUGE
        print(f"Error calculating quality score: {e}")
        try:
            fallback_components = [
                metrics['bleu'] / 100.0,
                metrics['chrf'],
                1.0 - min(metrics['cer'], 1.0),
                1.0 - min(metrics['wer'], 1.0)
            ]
            metrics['quality_score'] = np.mean(fallback_components)
        except:
            metrics['quality_score'] = 0.0
    
    return metrics

def evaluate_predictions(predictions: pd.DataFrame, test_set: pd.DataFrame) -> Dict:
    """Evaluate predictions against test set targets."""
    
    print("Starting evaluation...")
    
    # Merge predictions with test set (which contains targets)
    merged = test_set.merge(
        predictions, 
        on='sample_id', 
        how='inner',
        suffixes=('', '_pred')
    )
    
    if len(merged) == 0:
        return {
            'error': 'No matching samples found between predictions and test set',
            'evaluated_samples': 0
        }
    
    print(f"Evaluating {len(merged)} samples...")
    
    # Calculate metrics for each sample
    sample_metrics = []
    for idx, row in merged.iterrows():
        metrics = calculate_sentence_metrics(row['target_text'], row['prediction'])
        metrics['sample_id'] = row['sample_id']
        metrics['source_language'] = row['source_language']
        metrics['target_language'] = row['target_language']
        metrics['google_comparable'] = row.get('google_comparable', False)
        sample_metrics.append(metrics)
    
    sample_df = pd.DataFrame(sample_metrics)
    
    # Aggregate by language pairs - Fixed aggregation
    pair_metrics = {}
    overall_metrics = defaultdict(list)
    google_comparable_metrics = defaultdict(list)
    
    # Calculate metrics for each language pair
    for src_lang in ALL_UG40_LANGUAGES:
        for tgt_lang in ALL_UG40_LANGUAGES:
            if src_lang != tgt_lang:
                pair_data = sample_df[
                    (sample_df['source_language'] == src_lang) & 
                    (sample_df['target_language'] == tgt_lang)
                ]
                
                if len(pair_data) > 0:
                    pair_key = f"{src_lang}_to_{tgt_lang}"
                    pair_metrics[pair_key] = {}
                    
                    # Calculate averages for this pair
                    for metric in METRICS_CONFIG['primary_metrics'] + METRICS_CONFIG['secondary_metrics']:
                        if metric in pair_data.columns:
                            # Filter out invalid values
                            valid_values = pair_data[metric].replace([np.inf, -np.inf], np.nan).dropna()
                            if len(valid_values) > 0:
                                avg_value = float(valid_values.mean())
                                pair_metrics[pair_key][metric] = avg_value
                                
                                # Add to overall averages
                                overall_metrics[metric].append(avg_value)
                                
                                # Add to Google comparable if applicable
                                if (src_lang in GOOGLE_SUPPORTED_LANGUAGES and 
                                    tgt_lang in GOOGLE_SUPPORTED_LANGUAGES):
                                    google_comparable_metrics[metric].append(avg_value)
                    
                    pair_metrics[pair_key]['sample_count'] = len(pair_data)
    
    # Calculate overall averages
    averages = {}
    for metric in overall_metrics:
        if overall_metrics[metric]:
            averages[metric] = float(np.mean(overall_metrics[metric]))
        else:
            averages[metric] = 0.0
    
    # Calculate Google comparable averages
    google_averages = {}
    for metric in google_comparable_metrics:
        if google_comparable_metrics[metric]:
            google_averages[metric] = float(np.mean(google_comparable_metrics[metric]))
        else:
            google_averages[metric] = 0.0
    
    # Generate evaluation summary
    summary = {
        'total_samples': len(sample_df),
        'language_pairs_covered': len([k for k in pair_metrics if pair_metrics[k].get('sample_count', 0) > 0]),
        'google_comparable_pairs': len([k for k in pair_metrics 
                                      if '_to_' in k and 
                                      k.split('_to_')[0] in GOOGLE_SUPPORTED_LANGUAGES and
                                      k.split('_to_')[1] in GOOGLE_SUPPORTED_LANGUAGES and
                                      pair_metrics[k].get('sample_count', 0) > 0]),
        'primary_metrics': {metric: averages.get(metric, 0.0) 
                          for metric in METRICS_CONFIG['primary_metrics']},
        'secondary_metrics': {metric: averages.get(metric, 0.0) 
                            for metric in METRICS_CONFIG['secondary_metrics']}
    }
    
    return {
        'sample_metrics': sample_df,
        'pair_metrics': pair_metrics,
        'averages': averages,
        'google_comparable_averages': google_averages,
        'summary': summary,
        'evaluated_samples': len(sample_df),
        'error': None
    }

# Keep the rest of the functions unchanged...
def compare_with_baseline(results: Dict, baseline_results: Dict = None) -> Dict:
    """Compare results with baseline (e.g., Google Translate)."""
    
    if baseline_results is None:
        return {
            'comparison_available': False,
            'message': 'No baseline available for comparison'
        }
    
    comparison = {
        'comparison_available': True,
        'overall_comparison': {},
        'pair_comparisons': {},
        'better_pairs': [],
        'worse_pairs': []
    }
    
    # Compare overall metrics
    for metric in METRICS_CONFIG['primary_metrics']:
        if metric in results['averages'] and metric in baseline_results['averages']:
            user_score = results['averages'][metric]
            baseline_score = baseline_results['averages'][metric]
            
            # For error metrics (cer, wer), lower is better
            if metric in ['cer', 'wer']:
                improvement = baseline_score - user_score  # Positive = improvement
            else:
                improvement = user_score - baseline_score  # Positive = improvement
            
            comparison['overall_comparison'][metric] = {
                'user_score': user_score,
                'baseline_score': baseline_score,
                'improvement': improvement,
                'improvement_percent': (improvement / max(baseline_score, 0.001)) * 100
            }
    
    # Compare by language pairs (only Google comparable ones)
    google_pairs = [k for k in results['pair_metrics'] 
                   if '_to_' in k and 
                   k.split('_to_')[0] in GOOGLE_SUPPORTED_LANGUAGES and
                   k.split('_to_')[1] in GOOGLE_SUPPORTED_LANGUAGES]
    
    for pair in google_pairs:
        if pair in baseline_results['pair_metrics']:
            pair_comparison = {}
            
            for metric in METRICS_CONFIG['primary_metrics']:
                if (metric in results['pair_metrics'][pair] and 
                    metric in baseline_results['pair_metrics'][pair]):
                    
                    user_score = results['pair_metrics'][pair][metric]
                    baseline_score = baseline_results['pair_metrics'][pair][metric]
                    
                    if metric in ['cer', 'wer']:
                        improvement = baseline_score - user_score
                    else:
                        improvement = user_score - baseline_score
                    
                    pair_comparison[metric] = {
                        'user_score': user_score,
                        'baseline_score': baseline_score,
                        'improvement': improvement
                    }
            
            comparison['pair_comparisons'][pair] = pair_comparison
            
            # Determine if this pair is better or worse overall
            quality_improvement = pair_comparison.get('quality_score', {}).get('improvement', 0)
            if quality_improvement > 0.01:  # Threshold for significance
                comparison['better_pairs'].append(pair)
            elif quality_improvement < -0.01:
                comparison['worse_pairs'].append(pair)
    
    return comparison

def generate_evaluation_report(results: Dict, model_name: str = "", comparison: Dict = None) -> str:
    """Generate human-readable evaluation report."""
    
    if results.get('error'):
        return f"❌ **Evaluation Error**: {results['error']}"
    
    report = []
    
    # Header
    report.append(f"## Evaluation Report: {model_name or 'Submission'}")
    report.append("")
    
    # Summary
    summary = results['summary']
    report.append("### πŸ“Š Summary")
    report.append(f"- **Total Samples Evaluated**: {summary['total_samples']:,}")
    report.append(f"- **Language Pairs Covered**: {summary['language_pairs_covered']}")
    report.append(f"- **Google Comparable Pairs**: {summary['google_comparable_pairs']}")
    report.append("")
    
    # Primary metrics
    report.append("### 🎯 Primary Metrics")
    for metric, value in summary['primary_metrics'].items():
        formatted_value = f"{value:.4f}" if metric != 'bleu' else f"{value:.2f}"
        report.append(f"- **{metric.upper()}**: {formatted_value}")
    
    # Quality ranking (if comparison available)
    if comparison and comparison.get('comparison_available'):
        quality_comp = comparison['overall_comparison'].get('quality_score', {})
        if quality_comp:
            improvement = quality_comp.get('improvement', 0)
            if improvement > 0.01:
                report.append(f"  - 🟒 **{improvement:.3f}** better than baseline")
            elif improvement < -0.01:
                report.append(f"  - πŸ”΄ **{abs(improvement):.3f}** worse than baseline")
            else:
                report.append(f"  - 🟑 Similar to baseline")
    
    report.append("")
    
    # Secondary metrics
    report.append("### πŸ“ˆ Secondary Metrics")
    for metric, value in summary['secondary_metrics'].items():
        formatted_value = f"{value:.4f}"
        report.append(f"- **{metric.upper()}**: {formatted_value}")
    report.append("")
    
    # Language pair performance (top and bottom 5)
    pair_metrics = results['pair_metrics']
    if pair_metrics:
        # Sort pairs by quality score
        sorted_pairs = sorted(
            [(k, v.get('quality_score', 0)) for k, v in pair_metrics.items() if v.get('sample_count', 0) > 0],
            key=lambda x: x[1], 
            reverse=True
        )
        
        if sorted_pairs:
            report.append("### πŸ† Best Performing Language Pairs")
            for pair, score in sorted_pairs[:5]:
                src, tgt = pair.replace('_to_', ' β†’ ').split(' β†’ ')
                report.append(f"- **{src} β†’ {tgt}**: {score:.3f}")
            
            if len(sorted_pairs) > 5:
                report.append("")
                report.append("### πŸ“‰ Challenging Language Pairs")
                for pair, score in sorted_pairs[-3:]:
                    src, tgt = pair.replace('_to_', ' β†’ ').split(' β†’ ')
                    report.append(f"- **{src} β†’ {tgt}**: {score:.3f}")
    
    # Comparison with baseline
    if comparison and comparison.get('comparison_available'):
        report.append("")
        report.append("### πŸ” Comparison with Baseline")
        
        better_count = len(comparison.get('better_pairs', []))
        worse_count = len(comparison.get('worse_pairs', []))
        total_comparable = len(comparison.get('pair_comparisons', {}))
        
        if total_comparable > 0:
            report.append(f"- **Better than baseline**: {better_count}/{total_comparable} pairs")
            report.append(f"- **Worse than baseline**: {worse_count}/{total_comparable} pairs")
            
            if comparison['better_pairs']:
                report.append("  - Strong pairs: " + ", ".join(comparison['better_pairs'][:3]))
            
            if comparison['worse_pairs']:
                report.append("  - Weak pairs: " + ", ".join(comparison['worse_pairs'][:3]))
    
    return "\n".join(report)

def create_sample_analysis(results: Dict, n_samples: int = 10) -> pd.DataFrame:
    """Create sample analysis showing best and worst translations."""
    
    if 'sample_metrics' not in results:
        return pd.DataFrame()
    
    sample_df = results['sample_metrics']
    
    # Get best and worst samples by quality score
    best_samples = sample_df.nlargest(n_samples // 2, 'quality_score')
    worst_samples = sample_df.nsmallest(n_samples // 2, 'quality_score')
    
    analysis_samples = pd.concat([best_samples, worst_samples])
    
    # Add category
    analysis_samples['category'] = ['Best'] * len(best_samples) + ['Worst'] * len(worst_samples)
    
    return analysis_samples[['sample_id', 'source_language', 'target_language', 
                           'quality_score', 'bleu', 'chrf', 'category']]

def get_google_translate_baseline() -> Dict:
    """Get Google Translate baseline results (if available)."""
    
    try:
        # This would load pre-computed Google Translate results
        # For now, return empty dict - implement when Google Translate baseline is available
        return {}
    except:
        return {}