File size: 9,631 Bytes
1abade4
 
 
b78ec70
fa045d5
 
b78ec70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa045d5
 
b78ec70
 
 
 
 
1abade4
 
 
b78ec70
 
 
fa045d5
 
 
 
b78ec70
 
fa045d5
 
 
 
 
 
 
 
 
 
b78ec70
 
fa045d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78ec70
 
 
fa045d5
 
 
b78ec70
 
fa045d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78ec70
 
1abade4
b78ec70
 
 
fa045d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78ec70
fa045d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78ec70
 
fa045d5
 
 
 
 
 
 
 
b78ec70
 
fa045d5
 
 
 
 
 
 
 
 
 
 
b78ec70
fa045d5
 
 
b78ec70
fa045d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78ec70
fa045d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# src/utils.py
import re
import datetime
import pandas as pd
from typing import Dict, List, Tuple, Set, Optional
from config import ALL_UG40_LANGUAGES, LANGUAGE_NAMES, GOOGLE_SUPPORTED_LANGUAGES, DISPLAY_CONFIG

def get_all_language_pairs() -> List[Tuple[str, str]]:
    """Get all possible UG40 language pairs."""
    pairs = []
    for src in ALL_UG40_LANGUAGES:
        for tgt in ALL_UG40_LANGUAGES:
            if src != tgt:
                pairs.append((src, tgt))
    return pairs

def get_google_comparable_pairs() -> List[Tuple[str, str]]:
    """Get language pairs that can be compared with Google Translate."""
    pairs = []
    for src in GOOGLE_SUPPORTED_LANGUAGES:
        for tgt in GOOGLE_SUPPORTED_LANGUAGES:
            if src != tgt:
                pairs.append((src, tgt))
    return pairs

def format_language_pair(src: str, tgt: str) -> str:
    """Format language pair for display."""
    src_name = LANGUAGE_NAMES.get(src, src.upper())
    tgt_name = LANGUAGE_NAMES.get(tgt, tgt.upper())
    return f"{src_name}{tgt_name}"

def validate_language_code(lang: str) -> bool:
    """Validate if language code is supported."""
    return lang in ALL_UG40_LANGUAGES

def create_submission_id() -> str:
    """Create unique submission ID."""
    return datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")[:-3]

def sanitize_model_name(name: str) -> str:
    """Sanitize model name for display and storage."""
    if not name or not isinstance(name, str):
        return "Anonymous_Model"
    
    # Remove special characters, limit length
    name = re.sub(r'[^\w\-.]', '_', name.strip())
    # Remove multiple consecutive underscores
    name = re.sub(r'_+', '_', name)
    # Remove leading/trailing underscores
    name = name.strip('_')
    
    # Ensure minimum length
    if len(name) < 3:
        name = f"Model_{name}"
    
    return name[:50]  # Limit to 50 characters

def format_metric_value(value: float, metric: str) -> str:
    """Format metric value for display with appropriate precision."""
    if pd.isna(value) or value is None:
        return "N/A"
    
    try:
        precision = DISPLAY_CONFIG['decimal_places'].get(metric, 4)
        
        if metric == 'coverage_rate':
            return f"{value:.{precision}%}"
        elif metric in ['bleu']:
            return f"{value:.{precision}f}"
        elif metric in ['cer', 'wer'] and value > 1:
            # Cap error rates at 1.0 for display
            return f"{min(value, 1.0):.{precision}f}"
        else:
            return f"{value:.{precision}f}"
    except (ValueError, TypeError):
        return str(value)

def get_language_pair_stats(test_data: pd.DataFrame) -> Dict[str, Dict]:
    """Get statistics about language pair coverage in test data."""
    if test_data.empty:
        return {}
    
    stats = {}
    
    try:
        for src in ALL_UG40_LANGUAGES:
            for tgt in ALL_UG40_LANGUAGES:
                if src != tgt:
                    pair_data = test_data[
                        (test_data['source_language'] == src) & 
                        (test_data['target_language'] == tgt)
                    ]
                    
                    stats[f"{src}_{tgt}"] = {
                        'count': len(pair_data),
                        'google_comparable': src in GOOGLE_SUPPORTED_LANGUAGES and tgt in GOOGLE_SUPPORTED_LANGUAGES,
                        'display_name': format_language_pair(src, tgt),
                        'source_language': src,
                        'target_language': tgt
                    }
    except Exception as e:
        print(f"Error calculating language pair stats: {e}")
        return {}
    
    return stats

def validate_submission_completeness(predictions: pd.DataFrame, test_set: pd.DataFrame) -> Dict:
    """Validate that submission covers all required samples."""
    
    if predictions.empty or test_set.empty:
        return {
            'is_complete': False,
            'missing_count': len(test_set) if not test_set.empty else 0,
            'extra_count': len(predictions) if not predictions.empty else 0,
            'missing_ids': [],
            'coverage': 0.0
        }
    
    try:
        required_ids = set(test_set['sample_id'].astype(str))
        provided_ids = set(predictions['sample_id'].astype(str))
        
        missing_ids = required_ids - provided_ids
        extra_ids = provided_ids - required_ids
        
        return {
            'is_complete': len(missing_ids) == 0,
            'missing_count': len(missing_ids),
            'extra_count': len(extra_ids),
            'missing_ids': list(missing_ids)[:10],  # First 10 for display
            'coverage': len(provided_ids & required_ids) / len(required_ids) if required_ids else 0.0
        }
    except Exception as e:
        print(f"Error validating submission completeness: {e}")
        return {
            'is_complete': False,
            'missing_count': 0,
            'extra_count': 0,
            'missing_ids': [],
            'coverage': 0.0
        }

def calculate_language_pair_coverage(predictions: pd.DataFrame, test_set: pd.DataFrame) -> Dict:
    """Calculate coverage by language pair."""
    
    if predictions.empty or test_set.empty:
        return {}
    
    try:
        # Merge to get language info
        merged = test_set.merge(predictions, on='sample_id', how='left', suffixes=('', '_pred'))
        
        coverage = {}
        for src in ALL_UG40_LANGUAGES:
            for tgt in ALL_UG40_LANGUAGES:
                if src != tgt:
                    pair_data = merged[
                        (merged['source_language'] == src) & 
                        (merged['target_language'] == tgt)
                    ]
                    
                    if len(pair_data) > 0:
                        predicted_count = pair_data['prediction'].notna().sum()
                        coverage[f"{src}_{tgt}"] = {
                            'total': len(pair_data),
                            'predicted': predicted_count,
                            'coverage': predicted_count / len(pair_data),
                            'display_name': format_language_pair(src, tgt)
                        }
        
        return coverage
    except Exception as e:
        print(f"Error calculating language pair coverage: {e}")
        return {}

def safe_divide(numerator: float, denominator: float, default: float = 0.0) -> float:
    """Safely divide two numbers, handling edge cases."""
    try:
        if denominator == 0 or pd.isna(denominator) or pd.isna(numerator):
            return default
        result = numerator / denominator
        if pd.isna(result) or not pd.isfinite(result):
            return default
        return float(result)
    except (TypeError, ValueError, ZeroDivisionError):
        return default

def clean_text_for_evaluation(text: str) -> str:
    """Clean text for evaluation, handling common encoding issues."""
    if not isinstance(text, str):
        return str(text) if text is not None else ""
    
    # Remove extra whitespace
    text = re.sub(r'\s+', ' ', text.strip())
    
    # Handle common encoding issues
    text = text.replace('\u00a0', ' ')  # Non-breaking space
    text = text.replace('\u2019', "'")  # Right single quotation mark
    text = text.replace('\u201c', '"')  # Left double quotation mark
    text = text.replace('\u201d', '"')  # Right double quotation mark
    
    return text

def get_model_summary_stats(model_results: Dict) -> Dict:
    """Extract summary statistics from model evaluation results."""
    if not model_results or 'averages' not in model_results:
        return {}
    
    averages = model_results.get('averages', {})
    summary = model_results.get('summary', {})
    
    return {
        'quality_score': averages.get('quality_score', 0.0),
        'bleu': averages.get('bleu', 0.0),
        'chrf': averages.get('chrf', 0.0),
        'rouge1': averages.get('rouge1', 0.0),
        'rougeL': averages.get('rougeL', 0.0),
        'total_samples': summary.get('total_samples', 0),
        'language_pairs': summary.get('language_pairs_covered', 0),
        'google_pairs': summary.get('google_comparable_pairs', 0)
    }

def generate_model_identifier(model_name: str, author: str) -> str:
    """Generate a unique identifier for a model."""
    clean_name = sanitize_model_name(model_name)
    clean_author = re.sub(r'[^\w\-]', '_', author.strip())[:20] if author else "Anonymous"
    timestamp = datetime.datetime.now().strftime("%m%d_%H%M")
    return f"{clean_name}_{clean_author}_{timestamp}"

def validate_dataframe_structure(df: pd.DataFrame, required_columns: List[str]) -> Tuple[bool, List[str]]:
    """Validate that a DataFrame has the required structure."""
    if df.empty:
        return False, ["DataFrame is empty"]
    
    missing_columns = [col for col in required_columns if col not in df.columns]
    if missing_columns:
        return False, [f"Missing columns: {', '.join(missing_columns)}"]
    
    return True, []

def format_duration(seconds: float) -> str:
    """Format duration in seconds to human-readable format."""
    if seconds < 60:
        return f"{seconds:.1f}s"
    elif seconds < 3600:
        return f"{seconds/60:.1f}m"
    else:
        return f"{seconds/3600:.1f}h"

def truncate_text(text: str, max_length: int = 100, suffix: str = "...") -> str:
    """Truncate text to specified length with suffix."""
    if not isinstance(text, str):
        text = str(text)
    
    if len(text) <= max_length:
        return text
    
    return text[:max_length - len(suffix)] + suffix