Spaces:
Running
Running
File size: 30,645 Bytes
0c7e136 1ab6346 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 e32fdda 0c7e136 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 |
# app.py
# app.py (add this at the very top)
import subprocess
import sys
import os
from pathlib import Path
def setup_salt():
"""Clone and setup SALT library like in Colab."""
try:
# Check if salt is already available
import salt.dataset
print("β
SALT library already available")
return True
except ImportError:
pass
print("π₯ Setting up SALT library...")
try:
# Clone SALT repo if not exists
salt_dir = Path("salt")
if not salt_dir.exists():
print("π Cloning SALT repository...")
subprocess.check_call([
"git", "clone", "https://github.com/sunbirdai/salt.git"
])
else:
print("π SALT repository already exists")
# Install SALT requirements
salt_requirements = salt_dir / "requirements.txt"
if salt_requirements.exists():
print("π¦ Installing SALT requirements...")
subprocess.check_call([
sys.executable, "-m", "pip", "install", "-q", "-r", str(salt_requirements)
])
# Add SALT directory to Python path
salt_path = str(salt_dir.absolute())
if salt_path not in sys.path:
sys.path.insert(0, salt_path)
print(f"π Added {salt_path} to Python path")
# Test import
import salt.dataset
print("β
SALT library setup completed successfully")
return True
except Exception as e:
print(f"β Failed to setup SALT: {e}")
return False
# Setup SALT on startup
print("π Starting SALT Translation Leaderboard...")
if not setup_salt():
print("β Cannot continue without SALT library")
print("π‘ Please check that git is available and GitHub is accessible")
sys.exit(1)
import gradio as gr
import pandas as pd
import json
import traceback
from datetime import datetime
from typing import Optional, Dict, Tuple
# Import our modules
from src.test_set import get_public_test_set, get_complete_test_set, create_test_set_download, validate_test_set_integrity
from src.validation import validate_submission_complete
from src.evaluation import evaluate_predictions, generate_evaluation_report, get_google_translate_baseline
from src.leaderboard import (
load_leaderboard, add_model_to_leaderboard, get_leaderboard_stats,
filter_leaderboard, export_leaderboard, get_model_comparison
)
from src.plotting import (
create_leaderboard_ranking_plot, create_metrics_comparison_plot,
create_language_pair_heatmap, create_coverage_analysis_plot,
create_model_performance_timeline, create_google_comparison_plot,
create_detailed_model_analysis, create_submission_summary_plot
)
from src.utils import sanitize_model_name, get_all_language_pairs, get_google_comparable_pairs
from config import *
# Global variables for caching
current_leaderboard = None
public_test_set = None
complete_test_set = None
def initialize_data():
"""Initialize test sets and leaderboard data."""
global public_test_set, complete_test_set, current_leaderboard
try:
print("π Initializing SALT Translation Leaderboard...")
# Load test sets
print("π₯ Loading test sets...")
public_test_set = get_public_test_set()
complete_test_set = get_complete_test_set()
# Load leaderboard
print("π Loading leaderboard...")
current_leaderboard = load_leaderboard()
print(f"β
Initialization complete!")
print(f" - Test set: {len(public_test_set):,} samples")
print(f" - Language pairs: {len(get_all_language_pairs())}")
print(f" - Current models: {len(current_leaderboard)}")
return True
except Exception as e:
print(f"β Initialization failed: {e}")
traceback.print_exc()
return False
def download_test_set() -> Tuple[str, str]:
"""Create downloadable test set and return file path and info."""
try:
global public_test_set
if public_test_set is None:
public_test_set = get_public_test_set()
# Create download file
download_path, stats = create_test_set_download()
# Create info message
info_msg = f"""
π₯ **SALT Test Set Downloaded Successfully!**
**Dataset Statistics:**
- **Total Samples**: {stats['total_samples']:,}
- **Language Pairs**: {stats['language_pairs']}
- **Google Comparable**: {stats['google_comparable_samples']:,} samples
- **Languages**: {', '.join(stats['languages'])}
**File Format:**
- `sample_id`: Unique identifier for each sample
- `source_text`: Text to be translated
- `source_language`: Source language code
- `target_language`: Target language code
- `domain`: Content domain (if available)
- `google_comparable`: Whether this pair can be compared with Google Translate
**Next Steps:**
1. Run your model on the source texts
2. Create a CSV/JSON file with columns: `sample_id`, `prediction`
3. Upload your predictions using the "Submit Predictions" tab
"""
return download_path, info_msg
except Exception as e:
error_msg = f"β Error creating test set download: {str(e)}"
return None, error_msg
def validate_submission(file, model_name: str, author: str, description: str) -> Tuple[str, Optional[pd.DataFrame]]:
"""Validate uploaded prediction file."""
try:
if file is None:
return "β Please upload a predictions file", None
if not model_name.strip():
return "β Please provide a model name", None
# Read file content
file_content = file.read()
filename = file.name
# Get test set for validation
global complete_test_set
if complete_test_set is None:
complete_test_set = get_complete_test_set()
# Validate submission
validation_result = validate_submission_complete(
file_content, filename, complete_test_set, model_name
)
if validation_result['valid']:
# Store validation info for later use
return validation_result['report'], validation_result['predictions']
else:
return validation_result['report'], None
except Exception as e:
error_msg = f"β Validation error: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
return error_msg, None
def evaluate_submission(
predictions_df: pd.DataFrame,
model_name: str,
author: str,
description: str,
validation_info: Dict
) -> Tuple[str, pd.DataFrame, object, object]:
"""Evaluate validated predictions and update leaderboard."""
try:
if predictions_df is None:
return "β No valid predictions to evaluate", None, None, None
# Get complete test set with targets
global complete_test_set, current_leaderboard
if complete_test_set is None:
complete_test_set = get_complete_test_set()
# Run evaluation
print(f"π Evaluating {model_name}...")
evaluation_results = evaluate_predictions(predictions_df, complete_test_set)
if evaluation_results.get('error'):
return f"β Evaluation error: {evaluation_results['error']}", None, None, None
# Add to leaderboard
print("π Adding to leaderboard...")
model_type = "user_submission" # Could be enhanced to detect model type
updated_leaderboard = add_model_to_leaderboard(
model_name=sanitize_model_name(model_name),
author=author or "Anonymous",
evaluation_results=evaluation_results,
validation_info=validation_info,
model_type=model_type,
description=description or ""
)
# Update global leaderboard
current_leaderboard = updated_leaderboard
# Generate evaluation report
report = generate_evaluation_report(evaluation_results, model_name)
# Create visualization plots
summary_plot = create_submission_summary_plot(validation_info, evaluation_results)
ranking_plot = create_leaderboard_ranking_plot(updated_leaderboard)
# Format success message
rank = updated_leaderboard[updated_leaderboard['model_name'] == sanitize_model_name(model_name)].index[0] + 1
total_models = len(updated_leaderboard)
success_msg = f"""
π **Evaluation Complete!**
**Your Results:**
- **Model**: {model_name}
- **Rank**: #{rank} out of {total_models} models
- **Quality Score**: {evaluation_results['averages'].get('quality_score', 0):.4f}
- **BLEU**: {evaluation_results['averages'].get('bleu', 0):.2f}
- **ChrF**: {evaluation_results['averages'].get('chrf', 0):.4f}
**Coverage:**
- **Samples Evaluated**: {evaluation_results['evaluated_samples']:,}
- **Language Pairs**: {evaluation_results['summary']['language_pairs_covered']}
- **Google Comparable**: {evaluation_results['summary']['google_comparable_pairs']} pairs
{report}
"""
return success_msg, updated_leaderboard, summary_plot, ranking_plot
except Exception as e:
error_msg = f"β Evaluation failed: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
return error_msg, None, None, None
def refresh_leaderboard_display(
search_query: str = "",
model_type_filter: str = "all",
min_coverage: float = 0.0,
google_only: bool = False
) -> Tuple[pd.DataFrame, object, object, str]:
"""Refresh and filter leaderboard display."""
try:
global current_leaderboard
if current_leaderboard is None:
current_leaderboard = load_leaderboard()
# Apply filters
filtered_df = filter_leaderboard(
current_leaderboard,
search_query=search_query,
model_type=model_type_filter,
min_coverage=min_coverage,
google_comparable_only=google_only
)
# Create plots
ranking_plot = create_leaderboard_ranking_plot(filtered_df)
comparison_plot = create_metrics_comparison_plot(filtered_df)
# Get stats
stats = get_leaderboard_stats(filtered_df)
stats_text = f"""
π **Leaderboard Statistics**
- **Total Models**: {stats['total_models']}
- **Average Quality Score**: {stats['avg_quality_score']:.4f}
- **Google Comparable Models**: {stats['google_comparable_models']}
**Best Model**: {stats['best_model']['name'] if stats['best_model'] else 'None'}
**Latest Submission**: {stats['latest_submission'][:10] if stats['latest_submission'] else 'None'}
"""
return filtered_df, ranking_plot, comparison_plot, stats_text
except Exception as e:
error_msg = f"Error loading leaderboard: {str(e)}"
empty_df = pd.DataFrame()
return empty_df, None, None, error_msg
def get_model_details(model_name: str) -> Tuple[str, object]:
"""Get detailed analysis for a specific model."""
try:
global current_leaderboard
if current_leaderboard is None:
return "Leaderboard not loaded", None
# Find model
model_row = current_leaderboard[current_leaderboard['model_name'] == model_name]
if model_row.empty:
return f"Model '{model_name}' not found", None
model_info = model_row.iloc[0]
# Parse detailed metrics
try:
detailed_results = json.loads(model_info['detailed_metrics'])
except:
detailed_results = {}
# Create detailed plot
detail_plot = create_detailed_model_analysis(detailed_results, model_name)
# Format model details
details_text = f"""
# π Model Details: {model_name}
**Basic Information:**
- **Author**: {model_info['author']}
- **Submission Date**: {model_info['submission_date'][:10]}
- **Model Type**: {model_info['model_type']}
- **Description**: {model_info['description'] or 'No description provided'}
**Performance Metrics:**
- **Quality Score**: {model_info['quality_score']:.4f}
- **BLEU**: {model_info['bleu']:.2f}
- **ChrF**: {model_info['chrf']:.4f}
- **ROUGE-1**: {model_info['rouge1']:.4f}
- **ROUGE-L**: {model_info['rougeL']:.4f}
**Coverage Information:**
- **Total Samples**: {model_info['total_samples']:,}
- **Language Pairs Covered**: {model_info['language_pairs_covered']}
- **Google Comparable Pairs**: {model_info['google_pairs_covered']}
- **Coverage Rate**: {model_info['coverage_rate']:.1%}
**Google Translate Comparison:**
- **Google Quality Score**: {model_info['google_quality_score']:.4f}
- **Google BLEU**: {model_info['google_bleu']:.2f}
- **Google ChrF**: {model_info['google_chrf']:.4f}
"""
return details_text, detail_plot
except Exception as e:
error_msg = f"Error getting model details: {str(e)}"
return error_msg, None
# Initialize data on startup
print("π Starting SALT Translation Leaderboard...")
initialization_success = initialize_data()
# Create Gradio interface
with gr.Blocks(
title=TITLE,
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1400px !important;
margin: 0 auto;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
padding: 2rem;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 10px;
}
.metric-box {
background: #f8f9fa;
padding: 1rem;
border-radius: 8px;
margin: 0.5rem 0;
border-left: 4px solid #007bff;
}
.error-box {
background: #f8d7da;
color: #721c24;
padding: 1rem;
border-radius: 8px;
border-left: 4px solid #dc3545;
}
.success-box {
background: #d4edda;
color: #155724;
padding: 1rem;
border-radius: 8px;
border-left: 4px solid #28a745;
}
"""
) as demo:
# Header
gr.Markdown(f"""
<div class="main-header">
# {TITLE}
{DESCRIPTION}
**Supported Languages**: {len(ALL_UG40_LANGUAGES)} Ugandan languages | **Google Comparable**: {len(GOOGLE_SUPPORTED_LANGUAGES)} languages
</div>
""")
# Status indicator
if initialization_success:
status_msg = "β
System initialized successfully"
else:
status_msg = "β System initialization failed - some features may not work"
gr.Markdown(f"**Status**: {status_msg}")
with gr.Tabs():
# Tab 1: Get Test Set
with gr.Tab("π₯ Download Test Set", id="download"):
gr.Markdown("""
## π Get the SALT Translation Test Set
Download the standardized test set to evaluate your translation model.
The test set contains source texts in multiple Ugandan languages that you need to translate.
""")
with gr.Row():
download_btn = gr.Button("π₯ Download Test Set", variant="primary", size="lg")
with gr.Row():
with gr.Column():
download_file = gr.File(label="π Test Set File", interactive=False)
with gr.Column():
download_info = gr.Markdown(label="βΉοΈ Test Set Information")
gr.Markdown("""
### π Instructions
1. **Download** the test set using the button above
2. **Run your model** on the source texts to generate translations
3. **Create a predictions file** with your model's outputs
4. **Submit** your predictions using the "Submit Predictions" tab
### π Required Prediction Format
Your predictions file must be a CSV/TSV/JSON with these columns:
- `sample_id`: The unique identifier from the test set
- `prediction`: Your model's translation for that sample
**Example CSV:**
```
sample_id,prediction
salt_000001,Oli otya mukwano gwange?
salt_000002,Webale nyo olukya
...
```
""")
# Tab 2: Submit Predictions
with gr.Tab("π Submit Predictions", id="submit"):
gr.Markdown("""
## π― Submit Your Model's Predictions
Upload your model's predictions on the SALT test set for evaluation.
""")
with gr.Row():
with gr.Column(scale=1):
# Model information
gr.Markdown("### π Model Information")
model_name_input = gr.Textbox(
label="π€ Model Name",
placeholder="e.g., MyTranslator-v1.0",
info="Unique name for your model"
)
author_input = gr.Textbox(
label="π€ Author/Organization",
placeholder="Your name or organization",
value="Anonymous"
)
description_input = gr.Textbox(
label="π Description (Optional)",
placeholder="Brief description of your model",
lines=3
)
# File upload
gr.Markdown("### π€ Upload Predictions")
predictions_file = gr.File(
label="π Predictions File",
file_types=[".csv", ".tsv", ".json"],
info="CSV/TSV/JSON file with your model's predictions"
)
validate_btn = gr.Button("β
Validate Submission", variant="secondary")
submit_btn = gr.Button("π Submit for Evaluation", variant="primary", interactive=False)
with gr.Column(scale=1):
gr.Markdown("### π Validation Results")
validation_output = gr.Markdown()
# Results section
gr.Markdown("### π Evaluation Results")
with gr.Row():
evaluation_output = gr.Markdown()
with gr.Row():
with gr.Column():
submission_plot = gr.Plot(label="π Your Submission Analysis")
with gr.Column():
updated_leaderboard_plot = gr.Plot(label="π Updated Leaderboard")
with gr.Row():
results_table = gr.Dataframe(label="π Updated Leaderboard", interactive=False)
# Tab 3: Leaderboard
with gr.Tab("π Leaderboard", id="leaderboard"):
with gr.Row():
with gr.Column(scale=3):
search_input = gr.Textbox(
label="π Search Models",
placeholder="Search by model name, author...",
)
with gr.Column(scale=1):
model_type_dropdown = gr.Dropdown(
label="π§ Model Type",
choices=["all", "user_submission", "baseline"],
value="all"
)
with gr.Column(scale=1):
min_coverage_slider = gr.Slider(
label="π Min Coverage",
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.1
)
with gr.Column(scale=1):
google_only_checkbox = gr.Checkbox(
label="π€ Google Comparable Only",
value=False
)
with gr.Row():
refresh_btn = gr.Button("π Refresh", variant="secondary")
with gr.Row():
leaderboard_stats = gr.Markdown()
with gr.Row():
with gr.Column():
leaderboard_plot = gr.Plot(label="π Rankings")
with gr.Column():
comparison_plot = gr.Plot(label="π Multi-Metric Comparison")
with gr.Row():
leaderboard_table = gr.Dataframe(
label="π Full Leaderboard",
interactive=False,
wrap=True
)
# Tab 4: Model Analysis
with gr.Tab("π Model Analysis", id="analysis"):
with gr.Row():
model_select = gr.Dropdown(
label="π€ Select Model",
choices=[],
value=None,
info="Choose a model for detailed analysis"
)
analyze_btn = gr.Button("π Analyze", variant="primary")
with gr.Row():
model_details = gr.Markdown()
with gr.Row():
model_analysis_plot = gr.Plot(label="π Detailed Performance Analysis")
# Tab 5: Documentation
with gr.Tab("π Documentation", id="docs"):
gr.Markdown(f"""
# π SALT Translation Leaderboard Documentation
## π― Overview
The SALT Translation Leaderboard is a scientific evaluation platform for translation models on Ugandan languages.
Submit your model's predictions on our standardized test set to see how it compares with other models.
## π£οΈ Supported Languages
**All UG40 Languages ({len(ALL_UG40_LANGUAGES)} total):**
{', '.join([f"{code} ({LANGUAGE_NAMES.get(code, code)})" for code in ALL_UG40_LANGUAGES])}
**Google Translate Comparable ({len(GOOGLE_SUPPORTED_LANGUAGES)} languages):**
{', '.join([f"{code} ({LANGUAGE_NAMES.get(code, code)})" for code in GOOGLE_SUPPORTED_LANGUAGES])}
## π Evaluation Metrics
### Primary Metrics
- **Quality Score**: Composite metric (0-1, higher better) combining multiple metrics
- **BLEU**: Translation quality score (0-100, higher better)
- **ChrF**: Character-level F-score (0-1, higher better)
### Secondary Metrics
- **ROUGE-1/ROUGE-L**: Recall-oriented metrics (0-1, higher better)
- **CER/WER**: Character/Word Error Rate (0-1, lower better)
- **Length Ratio**: Prediction/reference length ratio
## π Submission Process
### Step 1: Download Test Set
1. Go to "Download Test Set" tab
2. Click "Download Test Set" button
3. Save the `salt_test_set.csv` file
### Step 2: Generate Predictions
1. Load the test set in your code
2. For each row, translate `source_text` from `source_language` to `target_language`
3. Save results as CSV with columns: `sample_id`, `prediction`
### Step 3: Submit & Evaluate
1. Go to "Submit Predictions" tab
2. Fill in model information
3. Upload your predictions file
4. Validate and submit for evaluation
## π File Formats
### Test Set Format
```csv
sample_id,source_text,source_language,target_language,domain,google_comparable
salt_000001,"Hello world",eng,lug,general,true
salt_000002,"How are you?",eng,ach,conversation,true
```
### Predictions Format
```csv
sample_id,prediction
salt_000001,"Amakuru ensi"
salt_000002,"Ibino nining?"
```
## π Leaderboard Types
### 1. Full UG40 Leaderboard
- Includes all {len(get_all_language_pairs())} language pairs
- Complete evaluation across all Ugandan languages
- Primary ranking system
### 2. Google Translate Comparable
- Limited to {len(get_google_comparable_pairs())} pairs
- Only languages supported by Google Translate
- Allows direct comparison with Google Translate baseline
## π¬ Scientific Rigor
- **Standardized Evaluation**: Same test set for all models
- **Multiple Metrics**: Comprehensive evaluation beyond just BLEU
- **Coverage Tracking**: Transparency about what each model covers
- **Reproducible**: All evaluation code and data available
## π€ Contributing
This leaderboard is maintained by [Sunbird AI](https://sunbird.ai).
**Contact**: [[email protected]](mailto:[email protected])
**GitHub**: [Sunbird AI GitHub](https://github.com/sunbirdai)
## π Citation
If you use this leaderboard in your research, please cite:
```bibtex
@misc{{salt_leaderboard_2024,
title={{SALT Translation Leaderboard: Evaluation of Translation Models on Ugandan Languages}},
author={{Sunbird AI}},
year={{2024}},
url={{https://huggingface.co/spaces/Sunbird/salt-translation-leaderboard}}
}}
```
## π Related Resources
- **SALT Dataset**: [sunbird/salt](https://huggingface.co/datasets/sunbird/salt)
- **Sunbird AI Models**: [Sunbird Organization](https://huggingface.co/Sunbird)
- **Research Papers**: [Sunbird AI Publications](https://sunbird.ai/research)
""")
# Event handlers with state management
predictions_validated = gr.State(value=None)
validation_info_state = gr.State(value=None)
# Download test set
download_btn.click(
fn=download_test_set,
outputs=[download_file, download_info]
)
# Validate predictions
def handle_validation(file, model_name, author, description):
report, predictions = validate_submission(file, model_name, author, description)
is_valid = predictions is not None
return report, predictions, predictions, is_valid
validate_btn.click(
fn=handle_validation,
inputs=[predictions_file, model_name_input, author_input, description_input],
outputs=[validation_output, predictions_validated, validation_info_state, submit_btn]
)
# Submit for evaluation
def handle_submission(predictions, model_name, author, description, validation_info):
if predictions is None:
return "β Please validate your submission first", None, None, None
# Extract validation info dict
validation_dict = {
'coverage': getattr(validation_info, 'coverage', 0.8) if hasattr(validation_info, 'coverage') else 0.8,
'report': 'Validation passed'
}
return evaluate_submission(predictions, model_name, author, description, validation_dict)
submit_btn.click(
fn=handle_submission,
inputs=[predictions_validated, model_name_input, author_input, description_input, validation_info_state],
outputs=[evaluation_output, results_table, submission_plot, updated_leaderboard_plot]
)
# Refresh leaderboard
def update_leaderboard_and_dropdown(*args):
table, plot1, plot2, stats = refresh_leaderboard_display(*args)
# Update model dropdown choices
model_choices = table['model_name'].tolist() if not table.empty else []
return table, plot1, plot2, stats, gr.Dropdown(choices=model_choices)
refresh_btn.click(
fn=update_leaderboard_and_dropdown,
inputs=[search_input, model_type_dropdown, min_coverage_slider, google_only_checkbox],
outputs=[leaderboard_table, leaderboard_plot, comparison_plot, leaderboard_stats, model_select]
)
# Auto-refresh on filter changes
for input_component in [search_input, model_type_dropdown, min_coverage_slider, google_only_checkbox]:
input_component.change(
fn=update_leaderboard_and_dropdown,
inputs=[search_input, model_type_dropdown, min_coverage_slider, google_only_checkbox],
outputs=[leaderboard_table, leaderboard_plot, comparison_plot, leaderboard_stats, model_select]
)
# Model analysis
analyze_btn.click(
fn=get_model_details,
inputs=[model_select],
outputs=[model_details, model_analysis_plot]
)
# Load initial data
demo.load(
fn=update_leaderboard_and_dropdown,
inputs=[search_input, model_type_dropdown, min_coverage_slider, google_only_checkbox],
outputs=[leaderboard_table, leaderboard_plot, comparison_plot, leaderboard_stats, model_select]
)
# Launch the application
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
enable_queue=True
) |