Spaces:
Running
Running
File size: 32,847 Bytes
e448f50 1ab6346 7c90731 1ab6346 9d53f89 1ab6346 9d53f89 1ab6346 9d53f89 1ab6346 9d53f89 1ab6346 9d53f89 1ab6346 9d53f89 1ab6346 9d53f89 1ab6346 7c90731 1ab6346 0c7e136 7c90731 2158319 7c90731 2158319 7c90731 e32fdda 7c90731 2158319 7c90731 e32fdda 7c90731 e32fdda 7c90731 0c7e136 e32fdda 0c7e136 7c90731 9d53f89 0c7e136 7c90731 9d53f89 7c90731 9d53f89 e179a7b 7c90731 e32fdda 9d53f89 e32fdda 9d53f89 0c7e136 7c90731 e179a7b e32fdda 0c7e136 7c90731 e32fdda 7c90731 9d53f89 7c90731 9d53f89 e32fdda 7c90731 3739a4f 2158319 3739a4f 2158319 7c90731 3739a4f 2158319 9d53f89 2158319 7c90731 2158319 9d53f89 2158319 7c90731 3739a4f 2158319 7c90731 2158319 7c90731 e32fdda 9d53f89 e32fdda 9d53f89 e32fdda 7c90731 e32fdda 0c7e136 7c90731 0c7e136 e32fdda 2158319 e32fdda 2158319 745019f 2158319 e764015 2158319 745019f 7c90731 745019f e32fdda 7c90731 745019f 7c90731 2158319 e32fdda 745019f 2158319 9d53f89 80a8c9b 9d53f89 e32fdda 2158319 745019f e32fdda 7c90731 e764015 7c90731 2158319 e32fdda 2158319 988dfa3 7c90731 e32fdda 988dfa3 9d53f89 e32fdda 7c90731 9d53f89 7c90731 9d53f89 7c90731 9d53f89 7c90731 e32fdda 2158319 e32fdda 2158319 9d53f89 0c7e136 9d53f89 0c7e136 9d53f89 7c90731 9d53f89 2158319 7c90731 9d53f89 7c90731 9d53f89 e32fdda 7c90731 3739a4f 2158319 3739a4f 2158319 3739a4f 0c7e136 9d53f89 7c90731 2158319 0c7e136 7c90731 988dfa3 0c7e136 7c90731 2158319 e32fdda e179a7b e32fdda e179a7b 7c90731 9d53f89 e179a7b 9d53f89 2158319 a4523eb e179a7b 2158319 3739a4f 7c90731 e179a7b 3739a4f 7c90731 e179a7b 3739a4f 9d53f89 e32fdda 2158319 e179a7b 7c90731 e32fdda 7c90731 e32fdda 7c90731 9d53f89 7c90731 9d53f89 7c90731 9d53f89 7c90731 9d53f89 7c90731 9d53f89 7c90731 31ee19a 7c90731 9d53f89 e32fdda 7c90731 0c7e136 e32fdda 7c90731 0c7e136 7c90731 0c7e136 7c90731 0c7e136 2158319 e32fdda 0c7e136 31ee19a 7c90731 a4523eb 7c90731 a4523eb 7c90731 a4523eb 7c90731 a4523eb 7c90731 a4523eb 7c90731 0c7e136 9d53f89 0c7e136 9d53f89 7c90731 0c7e136 9d53f89 e32fdda 7c90731 e32fdda 9d53f89 2158319 9d53f89 0c7e136 9d53f89 2158319 e32fdda 9d53f89 7c90731 e32fdda 7c90731 9d53f89 7c90731 9d53f89 e32fdda 7c90731 9d53f89 e32fdda 9d53f89 7c90731 e32fdda 7c90731 9d53f89 0c7e136 e32fdda 9d53f89 e32fdda 2158319 9d53f89 0c7e136 9d53f89 0c7e136 9d53f89 0c7e136 9d53f89 0c7e136 9d53f89 e32fdda 2158319 7c90731 0c7e136 9d53f89 e32fdda 9d53f89 aed11c8 9d53f89 7c90731 9d53f89 0c7e136 e32fdda 9d53f89 7c90731 9d53f89 e32fdda 7c90731 e32fdda 7c90731 9d53f89 2158319 7c90731 9d53f89 7c90731 2158319 7c90731 2158319 7c90731 2158319 9d53f89 e32fdda 2158319 9d53f89 e32fdda 2158319 9d53f89 e32fdda 2158319 9d53f89 7c90731 9d53f89 2158319 7c90731 2158319 7c90731 9d53f89 7c90731 9d53f89 2158319 7c90731 9d53f89 7c90731 2158319 7c90731 2158319 7c90731 9d53f89 2158319 9d53f89 2158319 9d53f89 e32fdda 2158319 9d53f89 7c90731 9d53f89 e32fdda 2158319 7c90731 2158319 7c90731 9d53f89 7c90731 9d53f89 7c90731 9d53f89 7c90731 2158319 7c90731 9d53f89 2158319 7c90731 2158319 9d53f89 2158319 7c90731 9d53f89 7c90731 9d53f89 7c90731 9d53f89 7c90731 0c7e136 e32fdda 7c90731 2158319 7c90731 2158319 7c90731 2158319 7c90731 0c7e136 e32fdda 0c7e136 e32fdda 7c90731 2158319 0c7e136 7c90731 0c7e136 7c90731 2158319 e32fdda 0c7e136 7c90731 0c7e136 e32fdda 2158319 e32fdda 0c7e136 e32fdda 7c90731 2158319 7c90731 0c7e136 7c90731 e32fdda 7c90731 e32fdda 7c90731 e32fdda 7c90731 0c7e136 7c90731 0c7e136 2158319 7c90731 2158319 7c90731 9d53f89 7c90731 e32fdda 2158319 9d53f89 e32fdda 7c90731 9d53f89 e32fdda 9d53f89 3739a4f 7c90731 aed11c8 9d53f89 7c90731 9d53f89 7c90731 9d53f89 2158319 9d53f89 2158319 9d53f89 2158319 9d53f89 e32fdda 7c90731 e32fdda 7c90731 e32fdda 9d53f89 e32fdda 0c7e136 7c90731 0c7e136 9d53f89 2158319 7c90731 0c7e136 9d53f89 2158319 7c90731 9d53f89 2158319 9d53f89 7c90731 2158319 9d53f89 e179a7b 988dfa3 e179a7b 9d53f89 0c7e136 988dfa3 7c90731 0c7e136 7c90731 0c7e136 9d53f89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 |
# app.py
import subprocess
import sys
import os
from pathlib import Path
import traceback
from datetime import datetime
from typing import Optional, Dict, Tuple, List
def setup_salt():
"""Clone and setup SALT library like in Colab."""
try:
import salt.dataset
print("β
SALT library already available")
return True
except ImportError:
pass
print("π₯ Setting up SALT library...")
try:
salt_dir = Path("salt")
if not salt_dir.exists():
print("π Cloning SALT repository...")
subprocess.check_call([
"git", "clone", "https://github.com/sunbirdai/salt.git"
])
else:
print("π SALT repository already exists")
salt_requirements = salt_dir / "requirements.txt"
if salt_requirements.exists():
print("π¦ Installing SALT requirements...")
subprocess.check_call([
sys.executable, "-m", "pip", "install", "-q", "-r", str(salt_requirements)
])
salt_path = str(salt_dir.absolute())
if salt_path not in sys.path:
sys.path.insert(0, salt_path)
print(f"π Added {salt_path} to Python path")
import salt.dataset
print("β
SALT library setup completed successfully")
return True
except Exception as e:
print(f"β Failed to setup SALT: {e}")
return False
# Setup SALT on startup
print("π Starting SALT Translation Leaderboard...")
if not setup_salt():
print("β Cannot continue without SALT library")
sys.exit(1)
import gradio as gr
import pandas as pd
import json
# Import our modules
from src.test_set import (
get_public_test_set,
get_complete_test_set,
create_test_set_download
)
from src.validation import validate_submission
from src.evaluation import evaluate_predictions, generate_evaluation_report
from src.leaderboard import (
load_leaderboard,
add_model_to_leaderboard,
get_track_leaderboard,
prepare_leaderboard_display
)
from src.plotting import (
create_leaderboard_plot,
create_language_pair_heatmap,
create_performance_comparison_plot,
create_language_pair_comparison_plot
)
from src.utils import sanitize_model_name, get_all_language_pairs
from config import *
# Global variables for caching
current_leaderboard = None
public_test_set = None
complete_test_set = None
def initialize_data():
"""Initialize test sets and leaderboard data."""
global public_test_set, complete_test_set, current_leaderboard
try:
print("π₯ Loading test sets...")
public_test_set = get_public_test_set()
complete_test_set = get_complete_test_set()
print("π Loading leaderboard...")
current_leaderboard = load_leaderboard()
# Debug leaderboard content
print(f"Leaderboard loaded with {len(current_leaderboard)} entries")
if not current_leaderboard.empty:
print(f"Leaderboard columns: {list(current_leaderboard.columns)}")
print(f"Sample row types: {current_leaderboard.dtypes.to_dict()}")
else:
print("Leaderboard is empty - will show empty interface")
print(f"β
Initialization complete!")
print(f" - Test set: {len(public_test_set):,} samples")
print(f" - Current models: {len(current_leaderboard)}")
return True
except Exception as e:
print(f"β Initialization failed: {e}")
import traceback
traceback.print_exc()
return False
def download_test_set() -> Tuple[str, str]:
"""Create downloadable test set and return file path and info."""
try:
global public_test_set
if public_test_set is None:
public_test_set = get_public_test_set()
download_path, stats = create_test_set_download()
info_msg = f"""
## π₯ SALT Test Set Downloaded Successfully!
### π Dataset Statistics:
- **Total Samples**: {stats['total_samples']:,}
- **Languages**: {len(stats.get('languages', []))} ({', '.join(stats.get('languages', []))})
- **Google Comparable**: {stats.get('google_comparable_samples', 0):,} samples
- **Language Pairs**: {stats.get('language_pairs', 0)}
### π Track Breakdown:
"""
track_breakdown = stats.get('track_breakdown', {})
for track_name, track_info in track_breakdown.items():
info_msg += f"""
**{EVALUATION_TRACKS[track_name]['name']}**:
- Samples: {track_info.get('total_samples', 0):,}
- Language Pairs: {track_info.get('language_pairs', 0)}
"""
info_msg += f"""
### π File Format:
- `sample_id`: Unique identifier for each sample
- `source_text`: Text to be translated
- `source_language`: Source language code
- `target_language`: Target language code
- `domain`: Content domain (if available)
- `google_comparable`: Whether this pair can be compared with Google Translate
### π¬ Next Steps:
1. **Run your model** on the source texts to generate translations
2. **Create a predictions file** with columns: `sample_id`, `prediction`
3. **Submit** your predictions using the submission tab
"""
return download_path, info_msg
except Exception as e:
error_msg = f"β Error creating test set download: {str(e)}"
return None, error_msg
def validate_submission_file(file, model_name: str, author: str, description: str) -> Tuple[str, Optional[pd.DataFrame], str]:
"""Validate uploaded prediction file."""
try:
if file is None:
return "β Please upload a predictions file", None, "community"
if not model_name.strip():
return "β Please provide a model name", None, "community"
# Handle different file input types
if isinstance(file, bytes):
file_content = file
elif isinstance(file, str):
if os.path.exists(file):
with open(file, "rb") as f:
file_content = f.read()
else:
file_content = file.encode("utf-8")
elif hasattr(file, "name") and os.path.exists(file.name):
with open(file.name, "rb") as f:
file_content = f.read()
else:
return "β Could not read uploaded file", None, "community"
filename = getattr(file, "name", None) or getattr(file, "filename", None) or "predictions.csv"
global complete_test_set
if complete_test_set is None:
complete_test_set = get_complete_test_set()
validation_result = validate_submission(
file_content, filename, complete_test_set, model_name, author, description
)
detected_category = validation_result.get("category", "community")
if validation_result.get("can_evaluate", False):
return validation_result["report"], validation_result["predictions"], detected_category
else:
return validation_result["report"], None, detected_category
except Exception as e:
return f"β Validation error: {e}\n\nTraceback:\n{traceback.format_exc()}", None, "community"
def evaluate_submission(
predictions_df: pd.DataFrame,
model_name: str,
author: str,
description: str,
detected_category: str,
) -> Tuple[str, pd.DataFrame, object, object]:
"""Evaluate validated predictions."""
try:
if predictions_df is None:
return "β No valid predictions to evaluate", None, None, None
global complete_test_set, current_leaderboard
if complete_test_set is None:
complete_test_set = get_complete_test_set()
print(f"π¬ Starting evaluation for {model_name}...")
evaluation_results = evaluate_predictions(predictions_df, complete_test_set, detected_category)
if evaluation_results.get('error'):
return f"β Evaluation error: {evaluation_results['error']}", None, None, None
print("π Adding to leaderboard...")
updated_leaderboard = add_model_to_leaderboard(
model_name=sanitize_model_name(model_name),
author=author or "Anonymous",
evaluation_results=evaluation_results,
model_category=detected_category,
description=description or ""
)
current_leaderboard = updated_leaderboard
report = generate_evaluation_report(evaluation_results, model_name)
# Create visualizations
summary_plot = create_performance_comparison_plot(updated_leaderboard, "google_comparable")
google_leaderboard = get_track_leaderboard(updated_leaderboard, "google_comparable")
display_leaderboard = prepare_leaderboard_display(google_leaderboard, "google_comparable")
success_msg = f"""
## π Evaluation Complete!
### π Model Information:
- **Model**: {model_name}
- **Category**: {MODEL_CATEGORIES.get(detected_category, {}).get('name', detected_category)}
- **Author**: {author or 'Anonymous'}
{report}
"""
return success_msg, display_leaderboard, summary_plot, None
except Exception as e:
error_msg = f"β Evaluation failed: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
return error_msg, None, None, None
def refresh_track_leaderboard(track: str, search_query: str = "", category_filter: str = "all") -> Tuple[pd.DataFrame, object, object, str]:
"""Refresh leaderboard for a specific track with filters."""
try:
print(f"Refreshing {track} leaderboard...")
global current_leaderboard
if current_leaderboard is None:
print("Loading leaderboard...")
current_leaderboard = load_leaderboard()
print(f"Leaderboard loaded with {len(current_leaderboard)} entries")
# Get track leaderboard with robust error handling
try:
print(f"Getting track leaderboard for {track}...")
track_leaderboard = get_track_leaderboard(current_leaderboard, track, category_filter=category_filter)
print(f"Track leaderboard has {len(track_leaderboard)} entries")
except Exception as e:
print(f"Error getting track leaderboard: {e}")
track_leaderboard = pd.DataFrame()
# Apply search filter
if search_query and not track_leaderboard.empty:
try:
print(f"Applying search filter: {search_query}")
query_lower = search_query.lower()
mask = (
track_leaderboard['model_name'].str.lower().str.contains(query_lower, na=False) |
track_leaderboard['author'].str.lower().str.contains(query_lower, na=False)
)
track_leaderboard = track_leaderboard[mask]
print(f"After search filter: {len(track_leaderboard)} entries")
except Exception as e:
print(f"Error applying search filter: {e}")
# Prepare display with error handling
try:
print("Preparing display...")
display_df = prepare_leaderboard_display(track_leaderboard, track)
print(f"Display prepared with {len(display_df)} rows")
except Exception as e:
print(f"Error preparing display: {e}")
display_df = pd.DataFrame()
# Create plots with error handling
try:
print("Creating ranking plot...")
ranking_plot = create_leaderboard_plot(track_leaderboard, track)
except Exception as e:
print(f"Error creating ranking plot: {e}")
ranking_plot = None
try:
print("Creating comparison plot...")
comparison_plot = create_performance_comparison_plot(track_leaderboard, track)
except Exception as e:
print(f"Error creating comparison plot: {e}")
comparison_plot = None
# Generate stats text with safe formatting
try:
print("Generating stats...")
track_config = EVALUATION_TRACKS[track]
best_model = "None"
best_score = 0.0
if not track_leaderboard.empty:
best_model = str(track_leaderboard.iloc[0]['model_name'])
quality_col = f'{track}_quality'
if quality_col in track_leaderboard.columns:
try:
score_val = track_leaderboard.iloc[0][quality_col]
best_score = float(score_val) if pd.notnull(score_val) else 0.0
except (ValueError, TypeError):
best_score = 0.0
stats_text = f"""
### π {track_config['name']} Statistics
- **Total Models**: {len(track_leaderboard)}
- **Best Model**: {best_model}
- **Best Score**: {best_score:.4f}
### π¬ Track Information:
{track_config.get('description', 'No description available')}
"""
print("Stats generated successfully")
except Exception as e:
print(f"Error generating stats: {e}")
stats_text = f"Error loading {track} statistics: {str(e)}"
print("Track refresh completed successfully")
return display_df, ranking_plot, comparison_plot, stats_text
except Exception as e:
error_msg = f"Error loading {track} leaderboard: {str(e)}"
print(f"MAIN ERROR: {error_msg}")
import traceback
traceback.print_exc()
return pd.DataFrame(), None, None, error_msg
def get_language_pair_comparison(track: str) -> Tuple[pd.DataFrame, object]:
"""Get language pair comparison data and visualization."""
try:
global current_leaderboard
if current_leaderboard is None:
return pd.DataFrame(), None
track_leaderboard = get_track_leaderboard(current_leaderboard, track)
if track_leaderboard.empty:
return pd.DataFrame(), None
# Create language pair comparison table
pairs_data = []
track_languages = EVALUATION_TRACKS[track]["languages"]
for src in track_languages:
for tgt in track_languages:
if src == tgt:
continue
pair_key = f"{src}_to_{tgt}"
pair_display = f"{LANGUAGE_NAMES.get(src, src)} β {LANGUAGE_NAMES.get(tgt, tgt)}"
for _, model in track_leaderboard.iterrows():
# Extract detailed results if available
detailed_col = f'detailed_{track}'
if detailed_col in model and pd.notna(model[detailed_col]):
try:
detailed_results = json.loads(model[detailed_col])
pair_metrics = detailed_results.get('pair_metrics', {})
if pair_key in pair_metrics:
metrics = pair_metrics[pair_key]
pairs_data.append({
'Language Pair': pair_display,
'Model': model['model_name'],
'Category': model['model_category'],
'Quality Score': metrics.get('quality_score', {}).get('mean', 0),
'BLEU': metrics.get('bleu', {}).get('mean', 0),
'ChrF': metrics.get('chrf', {}).get('mean', 0),
'Samples': metrics.get('sample_count', 0)
})
except (json.JSONDecodeError, KeyError):
continue
pairs_df = pd.DataFrame(pairs_data)
if pairs_df.empty:
return pd.DataFrame(), None
# Create visualization
comparison_plot = create_language_pair_comparison_plot(pairs_df, track)
return pairs_df, comparison_plot
except Exception as e:
print(f"Error in language pair comparison: {e}")
return pd.DataFrame(), None
# Initialize data on startup
initialization_success = initialize_data()
# Create Gradio interface
with gr.Blocks(
title="π SALT Translation Leaderboard",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1600px !important;
margin: 0 auto;
}
/* Force readable text in all themes */
.markdown, .gr-markdown, .gr-html {
color: var(--body-text-color) !important;
background: var(--background-fill-primary) !important;
}
.markdown h1, .markdown h2, .markdown h3,
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3 {
color: var(--body-text-color) !important;
}
.markdown p, .markdown li, .markdown strong,
.gr-markdown p, .gr-markdown li, .gr-markdown strong {
color: var(--body-text-color) !important;
}
/* Table styling */
.dataframe, .gr-dataframe {
color: var(--body-text-color) !important;
background: var(--background-fill-primary) !important;
}
/* Button and input styling */
.gr-button, .gr-textbox, .gr-dropdown {
color: var(--body-text-color) !important;
}
/* Ensure plot backgrounds work in both themes */
.plot-container {
background: var(--background-fill-primary) !important;
}
"""
) as demo:
# Header
gr.HTML("""
<div style="text-align: center; margin-bottom: 2rem; padding: 2rem; background: linear-gradient(135deg, #1e3a8a 0%, #3730a3 50%, #1e40af 100%); color: white !important; border-radius: 10px;">
<h1 style="color: white !important;">π SALT Translation Leaderboard</h1>
<p style="color: white !important;"><strong>Rigorous Evaluation of Translation Models on Ugandan Languages</strong></p>
<p style="color: white !important;">Three-tier evaluation β’ Statistical confidence intervals β’ Research-grade analysis</p>
</div>
""")
# Status indicator
if initialization_success:
status_msg = "β
System initialized successfully"
else:
status_msg = "β System initialization failed - some features may not work"
gr.Markdown(f"**System Status**: {status_msg}")
with gr.Tabs():
# Tab 1: Download Test Set
with gr.Tab("π₯ Download Test Set", id="download"):
gr.Markdown("""
## π Get the SALT Test Set
Download our test set for translation model evaluation.
""")
download_btn = gr.Button("π₯ Download Test Set", variant="primary", size="lg")
with gr.Row():
with gr.Column():
download_file = gr.File(label="π Test Set File", interactive=False)
with gr.Column():
download_info = gr.Markdown()
# Tab 2: Submit Predictions
with gr.Tab("π Submit Predictions", id="submit"):
gr.Markdown("""
## π― Submit Your Model's Predictions
Upload predictions for evaluation across all tracks.
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π Model Information")
model_name_input = gr.Textbox(
label="π€ Model Name",
placeholder="e.g., MyTranslator-v2.0",
info="Unique name for your model"
)
author_input = gr.Textbox(
label="π€ Author/Organization",
placeholder="Your name or organization",
value="Anonymous"
)
description_input = gr.Textbox(
label="π Model Description",
placeholder="Architecture, training data, special features...",
lines=4
)
predictions_file = gr.File(
label="π Predictions File",
file_types=[".csv", ".tsv", ".json"]
)
validate_btn = gr.Button("β
Validate Submission", variant="secondary")
submit_btn = gr.Button("π Submit for Evaluation", variant="primary", interactive=False)
with gr.Column(scale=1):
validation_output = gr.Markdown()
gr.Markdown("### π Evaluation Results")
evaluation_output = gr.Markdown()
with gr.Row():
with gr.Column():
submission_plot = gr.Plot(label="π Performance Analysis")
with gr.Column():
results_table = gr.Dataframe(label="π Updated Leaderboard", interactive=False)
# Tab 3: Google-Comparable Track
with gr.Tab("π€ Google-Comparable Track", id="google_track"):
gr.Markdown(f"""
## {EVALUATION_TRACKS['google_comparable']['name']}
**{EVALUATION_TRACKS['google_comparable']['description']}**
This track evaluates models on language pairs supported by Google Translate,
enabling direct comparison with commercial baselines.
""")
with gr.Row():
with gr.Column(scale=2):
google_search = gr.Textbox(label="π Search Models", placeholder="Search by model name, author...")
with gr.Column(scale=1):
google_category = gr.Dropdown(
label="π·οΈ Category Filter",
choices=["all"] + list(MODEL_CATEGORIES.keys()),
value="all"
)
with gr.Column(scale=1):
google_refresh = gr.Button("π Refresh", variant="secondary")
google_stats = gr.Markdown()
with gr.Row():
with gr.Column():
google_ranking_plot = gr.Plot(label="π Rankings")
with gr.Column():
google_comparison_plot = gr.Plot(label="π Performance Comparison")
google_leaderboard = gr.Dataframe(label="π Google-Comparable Leaderboard", interactive=False)
# Tab 4: UG40-Complete Track
with gr.Tab("π UG40-Complete Track", id="ug40_track"):
gr.Markdown(f"""
## {EVALUATION_TRACKS['ug40_complete']['name']}
**{EVALUATION_TRACKS['ug40_complete']['description']}**
This track evaluates models on all UG40 language pairs,
providing comprehensive assessment of Ugandan language translation capabilities.
""")
with gr.Row():
with gr.Column(scale=2):
ug40_search = gr.Textbox(label="π Search Models", placeholder="Search by model name, author...")
with gr.Column(scale=1):
ug40_category = gr.Dropdown(
label="π·οΈ Category Filter",
choices=["all"] + list(MODEL_CATEGORIES.keys()),
value="all"
)
with gr.Column(scale=1):
ug40_refresh = gr.Button("π Refresh", variant="secondary")
ug40_stats = gr.Markdown()
with gr.Row():
with gr.Column():
ug40_ranking_plot = gr.Plot(label="π Rankings")
with gr.Column():
ug40_comparison_plot = gr.Plot(label="π Performance Comparison")
ug40_leaderboard = gr.Dataframe(label="π UG40-Complete Leaderboard", interactive=False)
# Tab 5: Language Pair Analysis
with gr.Tab("π Language Pair Analysis", id="pairs_analysis"):
gr.Markdown("""
## π Language Pair Performance Analysis
Compare model performance across individual language pairs with detailed breakdowns.
""")
with gr.Row():
with gr.Column(scale=1):
pairs_track_select = gr.Dropdown(
label="π Select Track",
choices=list(EVALUATION_TRACKS.keys()),
value="google_comparable"
)
with gr.Column(scale=1):
pairs_refresh = gr.Button("π Analyze Language Pairs", variant="primary")
pairs_comparison_plot = gr.Plot(label="π Language Pair Comparison")
pairs_table = gr.Dataframe(label="π Language Pair Performance", interactive=False)
# Tab 6: Documentation
with gr.Tab("π Documentation", id="docs"):
gr.Markdown(f"""
# π SALT Translation Leaderboard Documentation
## π― Overview
The SALT Translation Leaderboard provides rigorous evaluation of translation models
on Ugandan languages using three different tracks for fair comparison.
## π Evaluation Tracks
**1. π€ Google-Comparable Track**
- **Languages**: {', '.join([LANGUAGE_NAMES[lang] for lang in GOOGLE_SUPPORTED_LANGUAGES])}
- **Purpose**: Fair comparison with commercial translation systems
- **Language Pairs**: {len([1 for src in GOOGLE_SUPPORTED_LANGUAGES for tgt in GOOGLE_SUPPORTED_LANGUAGES if src != tgt])}
**2. π UG40-Complete Track**
- **Languages**: All {len(ALL_UG40_LANGUAGES)} UG40 languages
- **Purpose**: Comprehensive Ugandan language capability assessment
- **Language Pairs**: {len([1 for src in ALL_UG40_LANGUAGES for tgt in ALL_UG40_LANGUAGES if src != tgt])}
## π Evaluation Metrics
### Primary Metrics
- **Quality Score**: Composite metric (0-1) combining BLEU, ChrF, and error rates
- **BLEU**: Bilingual Evaluation Understudy (0-100)
- **ChrF**: Character-level F-score (0-1)
### Model Categories
Models are automatically categorized for fair comparison:
- **π’ Commercial**: Production translation systems
- **π¬ Research**: Academic and research institution models
- **π Baseline**: Simple baseline and reference models
- **π₯ Community**: User-submitted models
## π Submission Process
### Step 1: Download Test Set
1. Click "Download Test Set" in the first tab
2. Save the test set file
### Step 2: Generate Predictions
1. Load the test set in your evaluation pipeline
2. For each row, translate `source_text` from `source_language` to `target_language`
3. Save results as CSV with columns: `sample_id`, `prediction`
### Step 3: Submit & Evaluate
1. Fill in model information
2. Upload your predictions file
3. Review validation report
4. Submit for evaluation
## π File Formats
### Test Set Format
```csv
sample_id,source_text,source_language,target_language,domain,google_comparable
salt_000001,"Hello world",eng,lug,general,true
salt_000002,"How are you?",eng,ach,conversation,true
```
### Predictions Format
```csv
sample_id,prediction
salt_000001,"Amakuru ensi"
salt_000002,"Ibino nining?"
```
## π€ Contributing
This leaderboard is designed for the research community. When using results:
1. Consider the appropriate track for your comparison
2. Report confidence intervals when available
3. Acknowledge the model category in comparisons
---
*For questions, contact the team at [email protected]*
""")
# Event handlers
predictions_validated = gr.State(value=None)
detected_category_state = gr.State(value="community")
# Download test set
download_btn.click(
fn=download_test_set,
outputs=[download_file, download_info]
)
# Validate predictions
def handle_validation(file, model_name, author, description):
report, predictions, category = validate_submission_file(file, model_name, author, description)
can_evaluate = predictions is not None
if can_evaluate:
button_status = "\n\nβ
**Ready to submit for evaluation!**"
else:
button_status = "\n\nβ **Please fix issues above before evaluation**"
enhanced_report = report + button_status
return (
enhanced_report,
predictions,
category,
gr.update(interactive=can_evaluate)
)
validate_btn.click(
fn=handle_validation,
inputs=[predictions_file, model_name_input, author_input, description_input],
outputs=[validation_output, predictions_validated, detected_category_state, submit_btn]
)
# Submit for evaluation
submit_btn.click(
fn=evaluate_submission,
inputs=[predictions_validated, model_name_input, author_input, description_input, detected_category_state],
outputs=[evaluation_output, results_table, submission_plot, gr.Plot(visible=False)]
)
# Track leaderboard refresh functions
google_refresh.click(
fn=lambda *args: refresh_track_leaderboard("google_comparable", *args),
inputs=[google_search, google_category],
outputs=[google_leaderboard, google_ranking_plot, google_comparison_plot, google_stats]
)
ug40_refresh.click(
fn=lambda *args: refresh_track_leaderboard("ug40_complete", *args),
inputs=[ug40_search, ug40_category],
outputs=[ug40_leaderboard, ug40_ranking_plot, ug40_comparison_plot, ug40_stats]
)
# Language pair analysis
pairs_refresh.click(
fn=get_language_pair_comparison,
inputs=[pairs_track_select],
outputs=[pairs_table, pairs_comparison_plot]
)
# Load initial data and update dropdowns
def load_initial_data():
try:
print("Loading initial data...")
global current_leaderboard
# Make sure we have a leaderboard
if current_leaderboard is None:
current_leaderboard = load_leaderboard()
print(f"Current leaderboard has {len(current_leaderboard)} entries")
# Try to load Google track data
try:
google_data = refresh_track_leaderboard("google_comparable", "", "all")
print("Successfully loaded Google track data")
return google_data
except Exception as e:
print(f"Error loading Google track: {e}")
# Return empty data if there's an error
empty_df = pd.DataFrame()
return (empty_df, None, None, "No data available")
except Exception as e:
print(f"Error in load_initial_data: {e}")
empty_df = pd.DataFrame()
return (empty_df, None, None, "Error loading data")
demo.load(
fn=load_initial_data,
outputs=[google_leaderboard, google_ranking_plot, google_comparison_plot, google_stats]
)
# Launch the application
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |