Spaces:
Sleeping
Sleeping
# src/plotting.py | |
import matplotlib.pyplot as plt | |
import matplotlib.gridspec as gridspec | |
import matplotlib.colors as mcolors | |
from colorsys import rgb_to_hls, hls_to_rgb | |
from collections import defaultdict | |
import numpy as np | |
import pandas as pd | |
from config import LANGUAGE_NAMES | |
def create_leaderboard_plot(leaderboard_df: pd.DataFrame, metric: str = 'quality_score') -> plt.Figure: | |
"""Create a horizontal bar chart showing model rankings.""" | |
fig, ax = plt.subplots(figsize=(12, 8)) | |
# Sort by the selected metric (descending) | |
df_sorted = leaderboard_df.sort_values(metric, ascending=True) | |
# Create color palette | |
colors = plt.cm.viridis(np.linspace(0, 1, len(df_sorted))) | |
# Create horizontal bar chart | |
bars = ax.barh(range(len(df_sorted)), df_sorted[metric], color=colors) | |
# Customize the plot | |
ax.set_yticks(range(len(df_sorted))) | |
ax.set_yticklabels(df_sorted['model_display_name']) | |
ax.set_xlabel(f'{metric.replace("_", " ").title()} Score') | |
ax.set_title(f'Model Leaderboard - {metric.replace("_", " ").title()}', fontsize=16, pad=20) | |
# Add value labels on bars | |
for i, (bar, value) in enumerate(zip(bars, df_sorted[metric])): | |
ax.text(value + 0.001, bar.get_y() + bar.get_height()/2, | |
f'{value:.3f}', ha='left', va='center', fontweight='bold') | |
# Add grid for better readability | |
ax.grid(axis='x', linestyle='--', alpha=0.7) | |
ax.set_axisbelow(True) | |
# Set x-axis limits with some padding | |
max_val = df_sorted[metric].max() | |
ax.set_xlim(0, max_val * 1.15) | |
plt.tight_layout() | |
return fig | |
def create_detailed_comparison_plot(metrics_data: dict, model_names: list) -> plt.Figure: | |
"""Create detailed comparison plot similar to the original evaluation script.""" | |
# Filter metrics_data to only include models in model_names | |
filtered_metrics = {name: metrics_data[name] for name in model_names if name in metrics_data} | |
if not filtered_metrics: | |
# Create empty plot if no data | |
fig, ax = plt.subplots(figsize=(10, 6)) | |
ax.text(0.5, 0.5, 'No data available for comparison', | |
ha='center', va='center', transform=ax.transAxes, fontsize=16) | |
ax.set_xlim(0, 1) | |
ax.set_ylim(0, 1) | |
ax.axis('off') | |
return fig | |
return plot_translation_metric_comparison(filtered_metrics, metric='bleu') | |
def plot_translation_metric_comparison(metrics_by_model: dict, metric: str = 'bleu') -> plt.Figure: | |
""" | |
Creates a grouped bar chart comparing a selected metric across translation models. | |
Adapted from the original plotting code. | |
""" | |
# Split language pairs into xx_to_eng and eng_to_xx categories | |
first_model_data = list(metrics_by_model.values())[0] | |
xx_to_eng = [key for key in first_model_data.keys() | |
if key.endswith('_to_eng') and key != 'averages'] | |
eng_to_xx = [key for key in first_model_data.keys() | |
if key.startswith('eng_to_') and key != 'averages'] | |
# Function to create nice labels | |
def format_label(label): | |
if label.startswith("eng_to_"): | |
source, target = "English", label.replace("eng_to_", "") | |
target = LANGUAGE_NAMES.get(target, target) | |
else: | |
source, target = label.replace("_to_eng", ""), "English" | |
source = LANGUAGE_NAMES.get(source, source) | |
return f"{source}→{target}" | |
# Extract metric values for each category | |
def extract_metric_values(model_metrics, pairs, metric_name): | |
return [model_metrics.get(pair, {}).get(metric_name, 0.0) for pair in pairs] | |
xx_to_eng_data = { | |
model_name: extract_metric_values(model_data, xx_to_eng, metric) | |
for model_name, model_data in metrics_by_model.items() | |
} | |
eng_to_xx_data = { | |
model_name: extract_metric_values(model_data, eng_to_xx, metric) | |
for model_name, model_data in metrics_by_model.items() | |
} | |
averages_data = { | |
model_name: [model_data.get("averages", {}).get(metric, 0.0)] | |
for model_name, model_data in metrics_by_model.items() | |
} | |
# Set up plot with custom grid | |
fig = plt.figure(figsize=(18, 12)) # Increased height for better spacing | |
# Create a GridSpec with 1 row and 5 columns | |
gs = gridspec.GridSpec(1, 5) | |
# Colors for the models | |
model_names = list(metrics_by_model.keys()) | |
family_base_colors = { | |
'gemma': '#3274A1', | |
'nllb': '#7f7f7f', | |
'qwen': '#E1812C', | |
'google': '#3A923A', | |
'other': '#D62728', | |
} | |
# Identify the family for each model | |
def get_family(model_name): | |
model_lower = model_name.lower() | |
if 'gemma' in model_lower: | |
return 'gemma' | |
elif 'qwen' in model_lower: | |
return 'qwen' | |
elif 'nllb' in model_lower: | |
return 'nllb' | |
elif 'google' in model_lower or model_name == 'google-translate': | |
return 'google' | |
else: | |
return 'other' | |
# Count how many models belong to each family | |
family_counts = defaultdict(int) | |
for model in model_names: | |
family = get_family(model) | |
family_counts[family] += 1 | |
# Generate slightly varied lightness within each family | |
colors = [] | |
family_indices = defaultdict(int) | |
for model in model_names: | |
family = get_family(model) | |
base_rgb = mcolors.to_rgb(family_base_colors[family]) | |
h, l, s = rgb_to_hls(*base_rgb) | |
index = family_indices[family] | |
count = family_counts[family] | |
# Vary lightness: from 0.35 to 0.65 | |
if count == 1: | |
new_l = l # Keep original for single models | |
else: | |
new_l = 0.65 - 0.3 * (index / max(count - 1, 1)) | |
varied_rgb = hls_to_rgb(h, new_l, s) | |
hex_color = mcolors.to_hex(varied_rgb) | |
colors.append(hex_color) | |
family_indices[family] += 1 | |
bar_width = 0.2 | |
opacity = 0.8 | |
# Positions for the bars | |
xx_to_eng_indices = np.arange(len(xx_to_eng)) | |
eng_to_xx_indices = np.arange(len(eng_to_xx)) | |
avg_index = np.array([0]) | |
# Determine y-axis limits based on metric | |
if metric in ['chrf', 'len_ratio']: | |
y_max = 1.1 | |
elif metric in ['cer', 'wer']: | |
y_max = 1.0 | |
elif metric == 'bleu': | |
y_max = 65 # Increased from 55 to accommodate high scores | |
elif metric in ['rouge1', 'rouge2', 'rougeL']: | |
y_max = 1.0 | |
elif metric == 'quality_score': | |
y_max = 0.65 | |
else: | |
# Auto-scale based on data | |
all_values = [] | |
for data in [xx_to_eng_data, eng_to_xx_data, averages_data]: | |
for model_data in data.values(): | |
all_values.extend(model_data) | |
y_max = max(all_values) * 1.1 if all_values else 1.0 | |
# Format metric name for display | |
metric_display = metric.upper() if metric in ['bleu', 'chrf', 'cer', 'wer'] else metric.replace('_', ' ').title() | |
# Create bars for xx_to_eng (using first 2 columns) | |
if xx_to_eng: | |
ax1 = plt.subplot(gs[0, 0:2]) | |
for i, (model_name, color) in enumerate(zip(model_names, colors)): | |
if model_name in xx_to_eng_data: | |
ax1.bar(xx_to_eng_indices + i*bar_width, xx_to_eng_data[model_name], | |
bar_width, alpha=opacity, color=color, label=model_name) | |
ax1.set_xlabel('Translation Direction') | |
ax1.set_ylabel(f'{metric_display} Score') | |
ax1.set_title(f'XX→English {metric_display} Performance') | |
ax1.set_xticks(xx_to_eng_indices + bar_width) | |
ax1.set_xticklabels([format_label(label) for label in xx_to_eng], rotation=45, ha='right') | |
ax1.set_ylim(0, y_max) | |
ax1.grid(axis='y', linestyle='--', alpha=0.7) | |
# Create bars for eng_to_xx (using next 2 columns) | |
if eng_to_xx: | |
ax2 = plt.subplot(gs[0, 2:4]) | |
for i, (model_name, color) in enumerate(zip(model_names, colors)): | |
if model_name in eng_to_xx_data: | |
ax2.bar(eng_to_xx_indices + i*bar_width, eng_to_xx_data[model_name], | |
bar_width, alpha=opacity, color=color, label=model_name) | |
ax2.set_xlabel('Translation Direction') | |
ax2.set_ylabel(f'{metric_display} Score') | |
ax2.set_title(f'English→XX {metric_display} Performance') | |
ax2.set_xticks(eng_to_xx_indices + bar_width) | |
ax2.set_xticklabels([format_label(label) for label in eng_to_xx], rotation=45, ha='right') | |
ax2.set_ylim(0, y_max) | |
ax2.grid(axis='y', linestyle='--', alpha=0.7) | |
# Create bars for averages (using last column) | |
ax3 = plt.subplot(gs[0, 4]) | |
for i, (model_name, color) in enumerate(zip(model_names, colors)): | |
if model_name in averages_data: | |
ax3.bar(avg_index + i*bar_width, averages_data[model_name], | |
bar_width, alpha=opacity, color=color, label=model_name) | |
ax3.set_xlabel('Overall') | |
ax3.set_ylabel(f'{metric_display} Score') | |
ax3.set_title(f'Average {metric_display}') | |
ax3.set_xticks(avg_index + bar_width) | |
ax3.set_xticklabels(['Average']) | |
ax3.set_ylim(0, y_max) | |
ax3.grid(axis='y', linestyle='--', alpha=0.7) | |
ax3.legend() | |
# Add note for metrics where lower is better | |
if metric in ['cer', 'wer']: | |
plt.figtext(0.5, 0.01, "Note: Lower values indicate better performance for this metric", | |
ha='center', fontsize=12, style='italic') | |
# Add an overall title and adjust layout | |
model_list = ' vs '.join(model_names) | |
plt.suptitle(f'{metric_display} Score Comparison: {model_list}', fontsize=16, y=0.98) | |
plt.tight_layout(rect=[0, 0.02, 1, 0.95]) | |
return fig | |
def create_summary_metrics_plot(leaderboard_df: pd.DataFrame) -> plt.Figure: | |
"""Create a summary plot showing multiple metrics for top models.""" | |
if leaderboard_df.empty: | |
fig, ax = plt.subplots(figsize=(10, 6)) | |
ax.text(0.5, 0.5, 'No data available', ha='center', va='center', | |
transform=ax.transAxes, fontsize=16) | |
return fig | |
# Select top 5 models by quality score | |
top_models = leaderboard_df.nlargest(5, 'quality_score') | |
# Metrics to display | |
metrics = ['bleu', 'chrf', 'quality_score'] | |
metric_labels = ['BLEU', 'ChrF', 'Quality Score'] | |
fig, axes = plt.subplots(1, 3, figsize=(15, 6)) | |
for i, (metric, label) in enumerate(zip(metrics, metric_labels)): | |
ax = axes[i] | |
# Sort by current metric | |
sorted_models = top_models.sort_values(metric, ascending=True) | |
# Create horizontal bar chart | |
bars = ax.barh(range(len(sorted_models)), sorted_models[metric], | |
color=plt.cm.viridis(np.linspace(0, 1, len(sorted_models)))) | |
ax.set_yticks(range(len(sorted_models))) | |
ax.set_yticklabels(sorted_models['model_display_name']) | |
ax.set_xlabel(f'{label} Score') | |
ax.set_title(f'Top Models - {label}') | |
ax.grid(axis='x', linestyle='--', alpha=0.7) | |
# Add value labels | |
for j, (bar, value) in enumerate(zip(bars, sorted_models[metric])): | |
ax.text(value + value*0.01, bar.get_y() + bar.get_height()/2, | |
f'{value:.3f}', ha='left', va='center', fontsize=10) | |
plt.tight_layout() | |
return fig |