Spaces:
Running
Running
import os | |
import pandas as pd | |
import yaml | |
from datasets import load_dataset | |
from config import ( | |
TEST_SET_DATASET, | |
SALT_DATASET, | |
MAX_TEST_SAMPLES, | |
HF_TOKEN, | |
MIN_SAMPLES_PER_PAIR, | |
ALL_UG40_LANGUAGES, | |
GOOGLE_SUPPORTED_LANGUAGES | |
) | |
import salt.dataset | |
from src.utils import get_all_language_pairs | |
# Local CSV filenames for persistence | |
LOCAL_PUBLIC_CSV = "salt_test_set.csv" | |
LOCAL_COMPLETE_CSV = "salt_complete_test_set.csv" | |
def generate_test_set(max_samples_per_pair: int = MAX_TEST_SAMPLES) -> pd.DataFrame: | |
""" | |
Generate standardized test set from the SALT dataset. | |
""" | |
print("π Generating SALT test set from source dataset...") | |
# Build SALT dataset config | |
dataset_config = f''' | |
huggingface_load: | |
path: {SALT_DATASET} | |
name: text-all | |
split: test | |
source: | |
type: text | |
language: {ALL_UG40_LANGUAGES} | |
target: | |
type: text | |
language: {ALL_UG40_LANGUAGES} | |
allow_same_src_and_tgt_language: False | |
''' | |
config = yaml.safe_load(dataset_config) | |
full_data = pd.DataFrame(salt.dataset.create(config)) | |
test_samples = [] | |
sample_id_counter = 1 | |
for src_lang in ALL_UG40_LANGUAGES: | |
for tgt_lang in ALL_UG40_LANGUAGES: | |
if src_lang == tgt_lang: | |
continue | |
pair_data = full_data[ | |
(full_data['source.language'] == src_lang) & | |
(full_data['target.language'] == tgt_lang) | |
] | |
if pair_data.empty: | |
continue | |
# Sample up to max_samples_per_pair | |
n_samples = min(len(pair_data), max_samples_per_pair) | |
sampled = pair_data.sample(n=n_samples, random_state=42) | |
for _, row in sampled.iterrows(): | |
test_samples.append({ | |
'sample_id': f"salt_{sample_id_counter:06d}", | |
'source_text': row['source'], | |
'target_text': row['target'], | |
'source_language': src_lang, | |
'target_language': tgt_lang, | |
'domain': row.get('domain', 'general'), | |
'google_comparable': ( | |
src_lang in GOOGLE_SUPPORTED_LANGUAGES and | |
tgt_lang in GOOGLE_SUPPORTED_LANGUAGES | |
) | |
}) | |
sample_id_counter += 1 | |
test_df = pd.DataFrame(test_samples) | |
print(f"β Generated test set: {len(test_df):,} samples across {len(get_all_language_pairs()):,} pairs") | |
return test_df | |
def _generate_and_save_test_set() -> (pd.DataFrame, pd.DataFrame): | |
""" | |
Generate the full test set and persist both public and complete CSV files. | |
""" | |
full_df = generate_test_set() | |
# Public version (no target_text) | |
public_df = full_df[[ | |
'sample_id', 'source_text', 'source_language', | |
'target_language', 'domain', 'google_comparable' | |
]] | |
public_df.to_csv(LOCAL_PUBLIC_CSV, index=False) | |
# Complete version (with target_text) | |
full_df.to_csv(LOCAL_COMPLETE_CSV, index=False) | |
print(f"β Saved local CSVs: {LOCAL_PUBLIC_CSV}, {LOCAL_COMPLETE_CSV}") | |
return public_df, full_df | |
def get_public_test_set() -> pd.DataFrame: | |
""" | |
Load the public test set (without targets). | |
Tries HF Hub β local CSV β regenerate. | |
""" | |
# 1) Try HF Hub | |
try: | |
ds = load_dataset(TEST_SET_DATASET, split="train", token=HF_TOKEN) | |
df = ds.to_pandas() | |
print(f"β Loaded public test set from HF Hub ({len(df):,} samples)") | |
return df | |
except Exception as e: | |
print("β οΈ HF Hub load failed, falling back to local CSV:", e) | |
# 2) Try local CSV | |
if os.path.exists(LOCAL_PUBLIC_CSV): | |
try: | |
df = pd.read_csv(LOCAL_PUBLIC_CSV) | |
print(f"β Loaded public test set from local CSV ({len(df):,} samples)") | |
return df | |
except Exception as e: | |
print("β οΈ Failed to read local CSV, regenerating:", e) | |
# 3) Regenerate & save | |
print("π Generating new public test set and saving to CSV...") | |
public_df, _ = _generate_and_save_test_set() | |
return public_df | |
def get_complete_test_set() -> pd.DataFrame: | |
""" | |
Load the complete test set (with targets). | |
Tries HF Hub-private β local CSV β regenerate. | |
""" | |
# 1) Try HF Hub private | |
try: | |
ds = load_dataset(TEST_SET_DATASET + "-private", split="train", token=HF_TOKEN) | |
df = ds.to_pandas() | |
print(f"β Loaded complete test set from HF Hub-private ({len(df):,} samples)") | |
return df | |
except Exception as e: | |
print("β οΈ HF Hub-private load failed, falling back to local CSV:", e) | |
# 2) Try local CSV | |
if os.path.exists(LOCAL_COMPLETE_CSV): | |
try: | |
df = pd.read_csv(LOCAL_COMPLETE_CSV) | |
print(f"β Loaded complete test set from local CSV ({len(df):,} samples)") | |
return df | |
except Exception as e: | |
print("β οΈ Failed to read local complete CSV, regenerating:", e) | |
# 3) Regenerate & save | |
print("π Generating new complete test set and saving to CSV...") | |
_, complete_df = _generate_and_save_test_set() | |
return complete_df | |
def create_test_set_download() -> (str, dict): | |
""" | |
Create a CSV download of the public test set and return its path + stats. | |
""" | |
public_df = get_public_test_set() | |
download_path = LOCAL_PUBLIC_CSV | |
# Ensure the CSV is up-to-date | |
public_df.to_csv(download_path, index=False) | |
stats = { | |
'total_samples': len(public_df), | |
'language_pairs': len(public_df.groupby(['source_language', 'target_language'])), | |
'google_comparable_samples': int(public_df['google_comparable'].sum()), | |
'languages': list(set(public_df['source_language']).union(public_df['target_language'])), | |
'domains': public_df['domain'].unique().tolist() | |
} | |
return download_path, stats | |
def validate_test_set_integrity() -> dict: | |
""" | |
Validate test set coverage and integrity. | |
""" | |
public_df = get_public_test_set() | |
complete_df = get_complete_test_set() | |
public_ids = set(public_df['sample_id']) | |
private_ids = set(complete_df['sample_id']) | |
coverage_by_pair = {} | |
for src in ALL_UG40_LANGUAGES: | |
for tgt in ALL_UG40_LANGUAGES: | |
if src == tgt: | |
continue | |
subset = public_df[ | |
(public_df['source_language'] == src) & | |
(public_df['target_language'] == tgt) | |
] | |
count = len(subset) | |
coverage_by_pair[f"{src}_{tgt}"] = { | |
'count': count, | |
'has_samples': count >= MIN_SAMPLES_PER_PAIR | |
} | |
return { | |
'alignment_check': public_ids <= private_ids, | |
'total_samples': len(public_df), | |
'coverage_by_pair': coverage_by_pair, | |
'missing_pairs': [k for k, v in coverage_by_pair.items() if not v['has_samples']] | |
} | |