Spaces:
Sleeping
Sleeping
Update src/evaluation.py
Browse files- src/evaluation.py +132 -188
src/evaluation.py
CHANGED
@@ -17,6 +17,7 @@ from config import (
|
|
17 |
STATISTICAL_CONFIG,
|
18 |
EVALUATION_TRACKS,
|
19 |
MODEL_CATEGORIES,
|
|
|
20 |
)
|
21 |
from src.utils import get_all_language_pairs, get_google_comparable_pairs
|
22 |
|
@@ -25,35 +26,35 @@ warnings.filterwarnings("ignore", category=RuntimeWarning)
|
|
25 |
|
26 |
def calculate_sentence_metrics(reference: str, prediction: str) -> Dict[str, float]:
|
27 |
"""Calculate all metrics for a single sentence pair with robust error handling."""
|
28 |
-
|
29 |
# Handle empty predictions
|
30 |
if not prediction or not isinstance(prediction, str):
|
31 |
prediction = ""
|
32 |
-
|
33 |
if not reference or not isinstance(reference, str):
|
34 |
reference = ""
|
35 |
-
|
36 |
# Normalize texts
|
37 |
normalizer = BasicTextNormalizer()
|
38 |
pred_norm = normalizer(prediction)
|
39 |
ref_norm = normalizer(reference)
|
40 |
-
|
41 |
metrics = {}
|
42 |
-
|
43 |
# BLEU score (0-100 scale)
|
44 |
try:
|
45 |
bleu = BLEU(effective_order=True)
|
46 |
metrics["bleu"] = bleu.sentence_score(pred_norm, [ref_norm]).score
|
47 |
except:
|
48 |
metrics["bleu"] = 0.0
|
49 |
-
|
50 |
# ChrF score (normalize to 0-1)
|
51 |
try:
|
52 |
chrf = CHRF()
|
53 |
metrics["chrf"] = chrf.sentence_score(pred_norm, [ref_norm]).score / 100.0
|
54 |
except:
|
55 |
metrics["chrf"] = 0.0
|
56 |
-
|
57 |
# Character Error Rate (CER)
|
58 |
try:
|
59 |
if len(ref_norm) > 0:
|
@@ -62,20 +63,18 @@ def calculate_sentence_metrics(reference: str, prediction: str) -> Dict[str, flo
|
|
62 |
metrics["cer"] = 1.0 if len(pred_norm) > 0 else 0.0
|
63 |
except:
|
64 |
metrics["cer"] = 1.0
|
65 |
-
|
66 |
# Word Error Rate (WER)
|
67 |
try:
|
68 |
ref_words = ref_norm.split()
|
69 |
pred_words = pred_norm.split()
|
70 |
if len(ref_words) > 0:
|
71 |
-
metrics["wer"] = Levenshtein.distance(ref_words, pred_words) / len(
|
72 |
-
ref_words
|
73 |
-
)
|
74 |
else:
|
75 |
metrics["wer"] = 1.0 if len(pred_words) > 0 else 0.0
|
76 |
except:
|
77 |
metrics["wer"] = 1.0
|
78 |
-
|
79 |
# Length ratio
|
80 |
try:
|
81 |
if len(ref_norm) > 0:
|
@@ -84,14 +83,14 @@ def calculate_sentence_metrics(reference: str, prediction: str) -> Dict[str, flo
|
|
84 |
metrics["len_ratio"] = 1.0 if len(pred_norm) == 0 else float("inf")
|
85 |
except:
|
86 |
metrics["len_ratio"] = 1.0
|
87 |
-
|
88 |
# ROUGE scores
|
89 |
try:
|
90 |
scorer = rouge_scorer.RougeScorer(
|
91 |
["rouge1", "rouge2", "rougeL"], use_stemmer=True
|
92 |
)
|
93 |
rouge_scores = scorer.score(ref_norm, pred_norm)
|
94 |
-
|
95 |
metrics["rouge1"] = rouge_scores["rouge1"].fmeasure
|
96 |
metrics["rouge2"] = rouge_scores["rouge2"].fmeasure
|
97 |
metrics["rougeL"] = rouge_scores["rougeL"].fmeasure
|
@@ -99,7 +98,7 @@ def calculate_sentence_metrics(reference: str, prediction: str) -> Dict[str, flo
|
|
99 |
metrics["rouge1"] = 0.0
|
100 |
metrics["rouge2"] = 0.0
|
101 |
metrics["rougeL"] = 0.0
|
102 |
-
|
103 |
# Quality score (composite metric)
|
104 |
try:
|
105 |
quality_components = [
|
@@ -113,13 +112,13 @@ def calculate_sentence_metrics(reference: str, prediction: str) -> Dict[str, flo
|
|
113 |
metrics["quality_score"] = np.mean(quality_components)
|
114 |
except:
|
115 |
metrics["quality_score"] = 0.0
|
116 |
-
|
117 |
return metrics
|
118 |
|
119 |
|
120 |
def calculate_statistical_metrics(values: List[float]) -> Dict[str, float]:
|
121 |
"""Calculate statistical measures including confidence intervals."""
|
122 |
-
|
123 |
if not values or len(values) == 0:
|
124 |
return {
|
125 |
"mean": 0.0,
|
@@ -129,10 +128,10 @@ def calculate_statistical_metrics(values: List[float]) -> Dict[str, float]:
|
|
129 |
"ci_upper": 0.0,
|
130 |
"n_samples": 0,
|
131 |
}
|
132 |
-
|
133 |
values = np.array(values)
|
134 |
values = values[~np.isnan(values)] # Remove NaN values
|
135 |
-
|
136 |
if len(values) == 0:
|
137 |
return {
|
138 |
"mean": 0.0,
|
@@ -142,23 +141,23 @@ def calculate_statistical_metrics(values: List[float]) -> Dict[str, float]:
|
|
142 |
"ci_upper": 0.0,
|
143 |
"n_samples": 0,
|
144 |
}
|
145 |
-
|
146 |
stats_dict = {
|
147 |
"mean": float(np.mean(values)),
|
148 |
"std": float(np.std(values, ddof=1)) if len(values) > 1 else 0.0,
|
149 |
"median": float(np.median(values)),
|
150 |
"n_samples": len(values),
|
151 |
}
|
152 |
-
|
153 |
# Calculate confidence intervals using bootstrap if enough samples
|
154 |
if len(values) >= STATISTICAL_CONFIG["min_samples_for_ci"]:
|
155 |
try:
|
156 |
confidence_level = STATISTICAL_CONFIG["confidence_level"]
|
157 |
-
|
158 |
# Bootstrap confidence interval
|
159 |
def mean_func(x):
|
160 |
return np.mean(x)
|
161 |
-
|
162 |
res = bootstrap(
|
163 |
(values,),
|
164 |
mean_func,
|
@@ -166,10 +165,10 @@ def calculate_statistical_metrics(values: List[float]) -> Dict[str, float]:
|
|
166 |
confidence_level=confidence_level,
|
167 |
random_state=42,
|
168 |
)
|
169 |
-
|
170 |
stats_dict["ci_lower"] = float(res.confidence_interval.low)
|
171 |
stats_dict["ci_upper"] = float(res.confidence_interval.high)
|
172 |
-
|
173 |
except Exception as e:
|
174 |
# Fallback to t-distribution CI
|
175 |
try:
|
@@ -184,7 +183,7 @@ def calculate_statistical_metrics(values: List[float]) -> Dict[str, float]:
|
|
184 |
else:
|
185 |
stats_dict["ci_lower"] = stats_dict["mean"]
|
186 |
stats_dict["ci_upper"] = stats_dict["mean"]
|
187 |
-
|
188 |
return stats_dict
|
189 |
|
190 |
|
@@ -192,51 +191,47 @@ def perform_significance_test(
|
|
192 |
values1: List[float], values2: List[float], metric_name: str
|
193 |
) -> Dict[str, float]:
|
194 |
"""Perform statistical significance test between two groups."""
|
195 |
-
|
196 |
if len(values1) < 2 or len(values2) < 2:
|
197 |
return {"p_value": 1.0, "effect_size": 0.0, "significant": False}
|
198 |
-
|
199 |
values1 = np.array(values1)
|
200 |
values2 = np.array(values2)
|
201 |
-
|
202 |
# Remove NaN values
|
203 |
values1 = values1[~np.isnan(values1)]
|
204 |
values2 = values2[~np.isnan(values2)]
|
205 |
-
|
206 |
if len(values1) < 2 or len(values2) < 2:
|
207 |
return {"p_value": 1.0, "effect_size": 0.0, "significant": False}
|
208 |
-
|
209 |
try:
|
210 |
# Perform t-test
|
211 |
t_stat, p_value = stats.ttest_ind(values1, values2, equal_var=False)
|
212 |
-
|
213 |
# Calculate effect size (Cohen's d)
|
214 |
pooled_std = np.sqrt(
|
215 |
-
(
|
216 |
-
|
217 |
-
|
218 |
-
)
|
219 |
-
/ (len(values1) + len(values2) - 2)
|
220 |
)
|
221 |
-
|
222 |
if pooled_std > 0:
|
223 |
effect_size = abs(np.mean(values1) - np.mean(values2)) / pooled_std
|
224 |
else:
|
225 |
effect_size = 0.0
|
226 |
-
|
227 |
# Determine significance
|
228 |
-
significance_level = EVALUATION_TRACKS["google_comparable"][
|
229 |
-
"significance_level"
|
230 |
-
]
|
231 |
significant = p_value < significance_level
|
232 |
-
|
233 |
return {
|
234 |
"p_value": float(p_value),
|
235 |
"effect_size": float(effect_size),
|
236 |
"significant": significant,
|
237 |
"t_statistic": float(t_stat),
|
238 |
}
|
239 |
-
|
240 |
except Exception as e:
|
241 |
return {"p_value": 1.0, "effect_size": 0.0, "significant": False}
|
242 |
|
@@ -245,32 +240,32 @@ def evaluate_predictions_by_track(
|
|
245 |
predictions: pd.DataFrame, test_set: pd.DataFrame, track: str
|
246 |
) -> Dict:
|
247 |
"""Evaluate predictions for a specific track with statistical analysis."""
|
248 |
-
|
249 |
print(f"π Evaluating for {track} track...")
|
250 |
-
|
251 |
track_config = EVALUATION_TRACKS[track]
|
252 |
track_languages = track_config["languages"]
|
253 |
-
|
254 |
# Filter test set and predictions to track languages
|
255 |
track_test_set = test_set[
|
256 |
-
(test_set["source_language"].isin(track_languages))
|
257 |
-
|
258 |
].copy()
|
259 |
-
|
260 |
# Merge predictions with test set
|
261 |
merged = track_test_set.merge(
|
262 |
predictions, on="sample_id", how="inner", suffixes=("", "_pred")
|
263 |
)
|
264 |
-
|
265 |
if len(merged) == 0:
|
266 |
return {
|
267 |
"error": f"No matching samples found for {track} track",
|
268 |
"evaluated_samples": 0,
|
269 |
"track": track,
|
270 |
}
|
271 |
-
|
272 |
print(f"π Evaluating {len(merged)} samples for {track} track...")
|
273 |
-
|
274 |
# Calculate metrics for each sample
|
275 |
sample_metrics = []
|
276 |
for idx, row in merged.iterrows():
|
@@ -279,78 +274,67 @@ def evaluate_predictions_by_track(
|
|
279 |
metrics["source_language"] = row["source_language"]
|
280 |
metrics["target_language"] = row["target_language"]
|
281 |
sample_metrics.append(metrics)
|
282 |
-
|
283 |
sample_df = pd.DataFrame(sample_metrics)
|
284 |
-
|
285 |
# Aggregate by language pairs with statistical analysis
|
286 |
pair_metrics = {}
|
287 |
overall_metrics = defaultdict(list)
|
288 |
-
|
289 |
# Calculate metrics for each language pair
|
290 |
for src_lang in track_languages:
|
291 |
for tgt_lang in track_languages:
|
292 |
if src_lang == tgt_lang:
|
293 |
continue
|
294 |
-
|
295 |
pair_data = sample_df[
|
296 |
-
(sample_df["source_language"] == src_lang)
|
297 |
-
|
298 |
]
|
299 |
-
|
300 |
if len(pair_data) >= track_config["min_samples_per_pair"]:
|
301 |
pair_key = f"{src_lang}_to_{tgt_lang}"
|
302 |
pair_metrics[pair_key] = {}
|
303 |
-
|
304 |
# Calculate statistical metrics for each measure
|
305 |
for metric in (
|
306 |
-
METRICS_CONFIG["primary_metrics"]
|
307 |
-
+ METRICS_CONFIG["secondary_metrics"]
|
308 |
):
|
309 |
if metric in pair_data.columns:
|
310 |
-
values = (
|
311 |
-
|
312 |
-
.replace([np.inf, -np.inf], np.nan)
|
313 |
-
.dropna()
|
314 |
-
)
|
315 |
-
|
316 |
if len(values) > 0:
|
317 |
-
stats_metrics = calculate_statistical_metrics(
|
318 |
-
values.tolist()
|
319 |
-
)
|
320 |
pair_metrics[pair_key][metric] = stats_metrics
|
321 |
-
|
322 |
# Add to overall metrics for track-level statistics
|
323 |
overall_metrics[metric].append(stats_metrics["mean"])
|
324 |
-
|
325 |
pair_metrics[pair_key]["sample_count"] = len(pair_data)
|
326 |
pair_metrics[pair_key]["languages"] = f"{src_lang}-{tgt_lang}"
|
327 |
-
|
328 |
# Calculate track-level aggregated statistics
|
329 |
track_averages = {}
|
330 |
track_statistics = {}
|
331 |
-
|
332 |
for metric in overall_metrics:
|
333 |
if overall_metrics[metric]:
|
334 |
track_stats = calculate_statistical_metrics(overall_metrics[metric])
|
335 |
track_averages[metric] = track_stats["mean"]
|
336 |
track_statistics[metric] = track_stats
|
337 |
-
|
338 |
# Generate evaluation summary
|
339 |
summary = {
|
340 |
"track": track,
|
341 |
"track_name": track_config["name"],
|
342 |
"total_samples": len(sample_df),
|
343 |
-
"language_pairs_evaluated": len(
|
344 |
-
|
345 |
-
),
|
346 |
-
"languages_covered": len(
|
347 |
-
set(sample_df["source_language"]) | set(sample_df["target_language"])
|
348 |
-
),
|
349 |
"min_samples_per_pair": track_config["min_samples_per_pair"],
|
350 |
"statistical_power": track_config["statistical_power"],
|
351 |
"significance_level": track_config["significance_level"],
|
352 |
}
|
353 |
-
|
354 |
return {
|
355 |
"sample_metrics": sample_df,
|
356 |
"pair_metrics": pair_metrics,
|
@@ -367,13 +351,13 @@ def evaluate_predictions_scientific(
|
|
367 |
predictions: pd.DataFrame, test_set: pd.DataFrame, model_category: str = "community"
|
368 |
) -> Dict:
|
369 |
"""Comprehensive evaluation across all tracks with scientific rigor."""
|
370 |
-
|
371 |
print("π¬ Starting scientific evaluation...")
|
372 |
-
|
373 |
# Validate model category
|
374 |
if model_category not in MODEL_CATEGORIES:
|
375 |
model_category = "community"
|
376 |
-
|
377 |
evaluation_results = {
|
378 |
"model_category": model_category,
|
379 |
"category_info": MODEL_CATEGORIES[model_category],
|
@@ -385,66 +369,56 @@ def evaluate_predictions_scientific(
|
|
385 |
"total_samples_available": len(test_set),
|
386 |
},
|
387 |
}
|
388 |
-
|
389 |
# Evaluate each track
|
390 |
for track_name in EVALUATION_TRACKS.keys():
|
391 |
track_result = evaluate_predictions_by_track(predictions, test_set, track_name)
|
392 |
evaluation_results["tracks"][track_name] = track_result
|
393 |
-
|
394 |
# Cross-track consistency analysis
|
395 |
evaluation_results["cross_track_analysis"] = analyze_cross_track_consistency(
|
396 |
evaluation_results["tracks"]
|
397 |
)
|
398 |
-
|
399 |
return evaluation_results
|
400 |
|
401 |
|
402 |
def analyze_cross_track_consistency(track_results: Dict) -> Dict:
|
403 |
"""Analyze consistency of model performance across different tracks."""
|
404 |
-
|
405 |
consistency_analysis = {
|
406 |
"track_correlations": {},
|
407 |
"performance_stability": {},
|
408 |
"language_coverage_analysis": {},
|
409 |
}
|
410 |
-
|
411 |
# Extract quality scores from each track for correlation analysis
|
412 |
track_scores = {}
|
413 |
for track_name, track_data in track_results.items():
|
414 |
-
if (
|
415 |
-
track_data.get("track_averages")
|
416 |
-
and "quality_score" in track_data["track_averages"]
|
417 |
-
):
|
418 |
track_scores[track_name] = track_data["track_averages"]["quality_score"]
|
419 |
-
|
420 |
# Calculate pairwise correlations (would need more data points for meaningful correlation)
|
421 |
if len(track_scores) >= 2:
|
422 |
track_names = list(track_scores.keys())
|
423 |
for i, track1 in enumerate(track_names):
|
424 |
-
for track2 in track_names[i + 1
|
425 |
# This would be more meaningful with multiple models
|
426 |
consistency_analysis["track_correlations"][f"{track1}_vs_{track2}"] = {
|
427 |
-
"score_difference": abs(
|
428 |
-
|
429 |
-
),
|
430 |
-
"relative_performance": track_scores[track1]
|
431 |
-
/ max(track_scores[track2], 0.001),
|
432 |
}
|
433 |
-
|
434 |
# Language coverage analysis
|
435 |
for track_name, track_data in track_results.items():
|
436 |
if track_data.get("summary"):
|
437 |
summary = track_data["summary"]
|
438 |
consistency_analysis["language_coverage_analysis"][track_name] = {
|
439 |
-
"coverage_rate": summary["language_pairs_evaluated"]
|
440 |
-
/ max(summary
|
441 |
-
"
|
442 |
-
/ max(summary["language_pairs_evaluated"], 1),
|
443 |
-
"statistical_adequacy": summary["total_samples"]
|
444 |
-
>= EVALUATION_TRACKS[track_name]["min_samples_per_pair"]
|
445 |
-
* summary["language_pairs_evaluated"],
|
446 |
}
|
447 |
-
|
448 |
return consistency_analysis
|
449 |
|
450 |
|
@@ -452,18 +426,16 @@ def compare_models_statistically(
|
|
452 |
model1_results: Dict, model2_results: Dict, track: str = "google_comparable"
|
453 |
) -> Dict:
|
454 |
"""Perform statistical comparison between two models on a specific track."""
|
455 |
-
|
456 |
-
if track not in model1_results.get("tracks", {}) or track not in model2_results.get(
|
457 |
-
"tracks", {}
|
458 |
-
):
|
459 |
return {"error": f"Track {track} not available for both models"}
|
460 |
-
|
461 |
track1_data = model1_results["tracks"][track]
|
462 |
track2_data = model2_results["tracks"][track]
|
463 |
-
|
464 |
if track1_data.get("error") or track2_data.get("error"):
|
465 |
return {"error": "One or both models have evaluation errors"}
|
466 |
-
|
467 |
comparison_results = {
|
468 |
"track": track,
|
469 |
"model1_category": model1_results.get("model_category", "unknown"),
|
@@ -472,22 +444,19 @@ def compare_models_statistically(
|
|
472 |
"language_pair_comparisons": {},
|
473 |
"overall_significance": {},
|
474 |
}
|
475 |
-
|
476 |
# Compare each metric
|
477 |
-
for metric in
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
"track_statistics", {}
|
482 |
-
) and metric in track2_data.get("track_statistics", {}):
|
483 |
-
|
484 |
# Extract sample-level data for this metric from both models
|
485 |
# This would require access to the original sample metrics
|
486 |
# For now, we'll use the aggregated statistics
|
487 |
-
|
488 |
stats1 = track1_data["track_statistics"][metric]
|
489 |
stats2 = track2_data["track_statistics"][metric]
|
490 |
-
|
491 |
# Create comparison summary
|
492 |
comparison_results["metric_comparisons"][metric] = {
|
493 |
"model1_mean": stats1["mean"],
|
@@ -495,12 +464,10 @@ def compare_models_statistically(
|
|
495 |
"model2_mean": stats2["mean"],
|
496 |
"model2_ci": [stats2["ci_lower"], stats2["ci_upper"]],
|
497 |
"difference": stats1["mean"] - stats2["mean"],
|
498 |
-
"ci_overlap": not (
|
499 |
-
|
500 |
-
or stats2["ci_upper"] < stats1["ci_lower"]
|
501 |
-
),
|
502 |
}
|
503 |
-
|
504 |
return comparison_results
|
505 |
|
506 |
|
@@ -508,49 +475,43 @@ def generate_scientific_report(
|
|
508 |
results: Dict, model_name: str = "", baseline_results: Dict = None
|
509 |
) -> str:
|
510 |
"""Generate a comprehensive scientific evaluation report."""
|
511 |
-
|
512 |
-
if any(
|
513 |
-
track_data.get("error") for track_data in results.get("tracks", {}).values()
|
514 |
-
):
|
515 |
return f"β **Evaluation Error**: Unable to complete scientific evaluation"
|
516 |
-
|
517 |
report = []
|
518 |
-
|
519 |
# Header
|
520 |
report.append(f"# π¬ Scientific Evaluation Report: {model_name or 'Model'}")
|
521 |
report.append("")
|
522 |
-
|
523 |
# Model categorization
|
524 |
category_info = results.get("category_info", {})
|
525 |
report.append(f"**Model Category**: {category_info.get('name', 'Unknown')}")
|
526 |
-
report.append(
|
527 |
-
f"**Category Description**: {category_info.get('description', 'N/A')}"
|
528 |
-
)
|
529 |
report.append("")
|
530 |
-
|
531 |
# Track-by-track analysis
|
532 |
for track_name, track_data in results.get("tracks", {}).items():
|
533 |
if track_data.get("error"):
|
534 |
continue
|
535 |
-
|
536 |
track_config = EVALUATION_TRACKS[track_name]
|
537 |
summary = track_data.get("summary", {})
|
538 |
track_stats = track_data.get("track_statistics", {})
|
539 |
-
|
540 |
report.append(f"## {track_config['name']}")
|
541 |
report.append(f"*{track_config['description']}*")
|
542 |
report.append("")
|
543 |
-
|
544 |
# Summary statistics
|
545 |
report.append("### π Summary Statistics")
|
546 |
report.append(f"- **Samples Evaluated**: {summary.get('total_samples', 0):,}")
|
547 |
-
report.append(
|
548 |
-
f"- **Language Pairs**: {summary.get('language_pairs_evaluated', 0)}"
|
549 |
-
)
|
550 |
report.append(f"- **Languages Covered**: {summary.get('languages_covered', 0)}")
|
551 |
report.append(f"- **Statistical Power**: {track_config['statistical_power']}")
|
552 |
report.append("")
|
553 |
-
|
554 |
# Primary metrics with confidence intervals
|
555 |
report.append("### π― Primary Metrics (95% Confidence Intervals)")
|
556 |
for metric in METRICS_CONFIG["primary_metrics"]:
|
@@ -559,68 +520,51 @@ def generate_scientific_report(
|
|
559 |
mean_val = stats["mean"]
|
560 |
ci_lower = stats["ci_lower"]
|
561 |
ci_upper = stats["ci_upper"]
|
562 |
-
|
563 |
-
report.append(
|
564 |
-
f"- **{metric.upper()}**: {mean_val:.4f} [{ci_lower:.4f}, {ci_upper:.4f}]"
|
565 |
-
)
|
566 |
report.append("")
|
567 |
-
|
568 |
# Statistical adequacy assessment
|
569 |
-
min_required = track_config["min_samples_per_pair"] * summary.get(
|
570 |
-
|
571 |
-
)
|
572 |
-
adequacy = (
|
573 |
-
"β
Adequate"
|
574 |
-
if summary.get("total_samples", 0) >= min_required
|
575 |
-
else "β οΈ Limited"
|
576 |
-
)
|
577 |
report.append(f"**Statistical Adequacy**: {adequacy}")
|
578 |
report.append("")
|
579 |
-
|
580 |
# Cross-track analysis
|
581 |
cross_track = results.get("cross_track_analysis", {})
|
582 |
if cross_track:
|
583 |
report.append("## π Cross-Track Consistency Analysis")
|
584 |
-
|
585 |
coverage_analysis = cross_track.get("language_coverage_analysis", {})
|
586 |
for track_name, coverage_info in coverage_analysis.items():
|
587 |
-
adequacy = (
|
588 |
-
"β
Statistically adequate"
|
589 |
-
if coverage_info.get("statistical_adequacy")
|
590 |
-
else "β οΈ Limited statistical power"
|
591 |
-
)
|
592 |
report.append(f"- **{track_name}**: {adequacy}")
|
593 |
-
|
594 |
report.append("")
|
595 |
-
|
596 |
# Baseline comparison if available
|
597 |
if baseline_results:
|
598 |
report.append("## π Baseline Comparison")
|
599 |
# This would include detailed statistical comparisons
|
600 |
report.append("*Statistical comparison with baseline models*")
|
601 |
report.append("")
|
602 |
-
|
603 |
# Scientific recommendations
|
604 |
report.append("## π‘ Scientific Recommendations")
|
605 |
-
|
606 |
total_samples = sum(
|
607 |
track_data.get("summary", {}).get("total_samples", 0)
|
608 |
for track_data in results.get("tracks", {}).values()
|
609 |
if not track_data.get("error")
|
610 |
)
|
611 |
-
|
612 |
if total_samples < SAMPLE_SIZE_RECOMMENDATIONS["publication_quality"]:
|
613 |
-
report.append(
|
614 |
-
|
615 |
-
)
|
616 |
-
|
617 |
google_track = results.get("tracks", {}).get("google_comparable", {})
|
618 |
-
if (
|
619 |
-
not google_track.get("error")
|
620 |
-
and google_track.get("summary", {}).get("total_samples", 0) > 100
|
621 |
-
):
|
622 |
report.append("- β
Sufficient data for comparison with commercial systems")
|
623 |
-
|
624 |
report.append("")
|
625 |
-
|
626 |
-
return "\n".join(report)
|
|
|
17 |
STATISTICAL_CONFIG,
|
18 |
EVALUATION_TRACKS,
|
19 |
MODEL_CATEGORIES,
|
20 |
+
SAMPLE_SIZE_RECOMMENDATIONS,
|
21 |
)
|
22 |
from src.utils import get_all_language_pairs, get_google_comparable_pairs
|
23 |
|
|
|
26 |
|
27 |
def calculate_sentence_metrics(reference: str, prediction: str) -> Dict[str, float]:
|
28 |
"""Calculate all metrics for a single sentence pair with robust error handling."""
|
29 |
+
|
30 |
# Handle empty predictions
|
31 |
if not prediction or not isinstance(prediction, str):
|
32 |
prediction = ""
|
33 |
+
|
34 |
if not reference or not isinstance(reference, str):
|
35 |
reference = ""
|
36 |
+
|
37 |
# Normalize texts
|
38 |
normalizer = BasicTextNormalizer()
|
39 |
pred_norm = normalizer(prediction)
|
40 |
ref_norm = normalizer(reference)
|
41 |
+
|
42 |
metrics = {}
|
43 |
+
|
44 |
# BLEU score (0-100 scale)
|
45 |
try:
|
46 |
bleu = BLEU(effective_order=True)
|
47 |
metrics["bleu"] = bleu.sentence_score(pred_norm, [ref_norm]).score
|
48 |
except:
|
49 |
metrics["bleu"] = 0.0
|
50 |
+
|
51 |
# ChrF score (normalize to 0-1)
|
52 |
try:
|
53 |
chrf = CHRF()
|
54 |
metrics["chrf"] = chrf.sentence_score(pred_norm, [ref_norm]).score / 100.0
|
55 |
except:
|
56 |
metrics["chrf"] = 0.0
|
57 |
+
|
58 |
# Character Error Rate (CER)
|
59 |
try:
|
60 |
if len(ref_norm) > 0:
|
|
|
63 |
metrics["cer"] = 1.0 if len(pred_norm) > 0 else 0.0
|
64 |
except:
|
65 |
metrics["cer"] = 1.0
|
66 |
+
|
67 |
# Word Error Rate (WER)
|
68 |
try:
|
69 |
ref_words = ref_norm.split()
|
70 |
pred_words = pred_norm.split()
|
71 |
if len(ref_words) > 0:
|
72 |
+
metrics["wer"] = Levenshtein.distance(ref_words, pred_words) / len(ref_words)
|
|
|
|
|
73 |
else:
|
74 |
metrics["wer"] = 1.0 if len(pred_words) > 0 else 0.0
|
75 |
except:
|
76 |
metrics["wer"] = 1.0
|
77 |
+
|
78 |
# Length ratio
|
79 |
try:
|
80 |
if len(ref_norm) > 0:
|
|
|
83 |
metrics["len_ratio"] = 1.0 if len(pred_norm) == 0 else float("inf")
|
84 |
except:
|
85 |
metrics["len_ratio"] = 1.0
|
86 |
+
|
87 |
# ROUGE scores
|
88 |
try:
|
89 |
scorer = rouge_scorer.RougeScorer(
|
90 |
["rouge1", "rouge2", "rougeL"], use_stemmer=True
|
91 |
)
|
92 |
rouge_scores = scorer.score(ref_norm, pred_norm)
|
93 |
+
|
94 |
metrics["rouge1"] = rouge_scores["rouge1"].fmeasure
|
95 |
metrics["rouge2"] = rouge_scores["rouge2"].fmeasure
|
96 |
metrics["rougeL"] = rouge_scores["rougeL"].fmeasure
|
|
|
98 |
metrics["rouge1"] = 0.0
|
99 |
metrics["rouge2"] = 0.0
|
100 |
metrics["rougeL"] = 0.0
|
101 |
+
|
102 |
# Quality score (composite metric)
|
103 |
try:
|
104 |
quality_components = [
|
|
|
112 |
metrics["quality_score"] = np.mean(quality_components)
|
113 |
except:
|
114 |
metrics["quality_score"] = 0.0
|
115 |
+
|
116 |
return metrics
|
117 |
|
118 |
|
119 |
def calculate_statistical_metrics(values: List[float]) -> Dict[str, float]:
|
120 |
"""Calculate statistical measures including confidence intervals."""
|
121 |
+
|
122 |
if not values or len(values) == 0:
|
123 |
return {
|
124 |
"mean": 0.0,
|
|
|
128 |
"ci_upper": 0.0,
|
129 |
"n_samples": 0,
|
130 |
}
|
131 |
+
|
132 |
values = np.array(values)
|
133 |
values = values[~np.isnan(values)] # Remove NaN values
|
134 |
+
|
135 |
if len(values) == 0:
|
136 |
return {
|
137 |
"mean": 0.0,
|
|
|
141 |
"ci_upper": 0.0,
|
142 |
"n_samples": 0,
|
143 |
}
|
144 |
+
|
145 |
stats_dict = {
|
146 |
"mean": float(np.mean(values)),
|
147 |
"std": float(np.std(values, ddof=1)) if len(values) > 1 else 0.0,
|
148 |
"median": float(np.median(values)),
|
149 |
"n_samples": len(values),
|
150 |
}
|
151 |
+
|
152 |
# Calculate confidence intervals using bootstrap if enough samples
|
153 |
if len(values) >= STATISTICAL_CONFIG["min_samples_for_ci"]:
|
154 |
try:
|
155 |
confidence_level = STATISTICAL_CONFIG["confidence_level"]
|
156 |
+
|
157 |
# Bootstrap confidence interval
|
158 |
def mean_func(x):
|
159 |
return np.mean(x)
|
160 |
+
|
161 |
res = bootstrap(
|
162 |
(values,),
|
163 |
mean_func,
|
|
|
165 |
confidence_level=confidence_level,
|
166 |
random_state=42,
|
167 |
)
|
168 |
+
|
169 |
stats_dict["ci_lower"] = float(res.confidence_interval.low)
|
170 |
stats_dict["ci_upper"] = float(res.confidence_interval.high)
|
171 |
+
|
172 |
except Exception as e:
|
173 |
# Fallback to t-distribution CI
|
174 |
try:
|
|
|
183 |
else:
|
184 |
stats_dict["ci_lower"] = stats_dict["mean"]
|
185 |
stats_dict["ci_upper"] = stats_dict["mean"]
|
186 |
+
|
187 |
return stats_dict
|
188 |
|
189 |
|
|
|
191 |
values1: List[float], values2: List[float], metric_name: str
|
192 |
) -> Dict[str, float]:
|
193 |
"""Perform statistical significance test between two groups."""
|
194 |
+
|
195 |
if len(values1) < 2 or len(values2) < 2:
|
196 |
return {"p_value": 1.0, "effect_size": 0.0, "significant": False}
|
197 |
+
|
198 |
values1 = np.array(values1)
|
199 |
values2 = np.array(values2)
|
200 |
+
|
201 |
# Remove NaN values
|
202 |
values1 = values1[~np.isnan(values1)]
|
203 |
values2 = values2[~np.isnan(values2)]
|
204 |
+
|
205 |
if len(values1) < 2 or len(values2) < 2:
|
206 |
return {"p_value": 1.0, "effect_size": 0.0, "significant": False}
|
207 |
+
|
208 |
try:
|
209 |
# Perform t-test
|
210 |
t_stat, p_value = stats.ttest_ind(values1, values2, equal_var=False)
|
211 |
+
|
212 |
# Calculate effect size (Cohen's d)
|
213 |
pooled_std = np.sqrt(
|
214 |
+
((len(values1) - 1) * np.var(values1, ddof=1) +
|
215 |
+
(len(values2) - 1) * np.var(values2, ddof=1)) /
|
216 |
+
(len(values1) + len(values2) - 2)
|
|
|
|
|
217 |
)
|
218 |
+
|
219 |
if pooled_std > 0:
|
220 |
effect_size = abs(np.mean(values1) - np.mean(values2)) / pooled_std
|
221 |
else:
|
222 |
effect_size = 0.0
|
223 |
+
|
224 |
# Determine significance
|
225 |
+
significance_level = EVALUATION_TRACKS["google_comparable"]["significance_level"]
|
|
|
|
|
226 |
significant = p_value < significance_level
|
227 |
+
|
228 |
return {
|
229 |
"p_value": float(p_value),
|
230 |
"effect_size": float(effect_size),
|
231 |
"significant": significant,
|
232 |
"t_statistic": float(t_stat),
|
233 |
}
|
234 |
+
|
235 |
except Exception as e:
|
236 |
return {"p_value": 1.0, "effect_size": 0.0, "significant": False}
|
237 |
|
|
|
240 |
predictions: pd.DataFrame, test_set: pd.DataFrame, track: str
|
241 |
) -> Dict:
|
242 |
"""Evaluate predictions for a specific track with statistical analysis."""
|
243 |
+
|
244 |
print(f"π Evaluating for {track} track...")
|
245 |
+
|
246 |
track_config = EVALUATION_TRACKS[track]
|
247 |
track_languages = track_config["languages"]
|
248 |
+
|
249 |
# Filter test set and predictions to track languages
|
250 |
track_test_set = test_set[
|
251 |
+
(test_set["source_language"].isin(track_languages)) &
|
252 |
+
(test_set["target_language"].isin(track_languages))
|
253 |
].copy()
|
254 |
+
|
255 |
# Merge predictions with test set
|
256 |
merged = track_test_set.merge(
|
257 |
predictions, on="sample_id", how="inner", suffixes=("", "_pred")
|
258 |
)
|
259 |
+
|
260 |
if len(merged) == 0:
|
261 |
return {
|
262 |
"error": f"No matching samples found for {track} track",
|
263 |
"evaluated_samples": 0,
|
264 |
"track": track,
|
265 |
}
|
266 |
+
|
267 |
print(f"π Evaluating {len(merged)} samples for {track} track...")
|
268 |
+
|
269 |
# Calculate metrics for each sample
|
270 |
sample_metrics = []
|
271 |
for idx, row in merged.iterrows():
|
|
|
274 |
metrics["source_language"] = row["source_language"]
|
275 |
metrics["target_language"] = row["target_language"]
|
276 |
sample_metrics.append(metrics)
|
277 |
+
|
278 |
sample_df = pd.DataFrame(sample_metrics)
|
279 |
+
|
280 |
# Aggregate by language pairs with statistical analysis
|
281 |
pair_metrics = {}
|
282 |
overall_metrics = defaultdict(list)
|
283 |
+
|
284 |
# Calculate metrics for each language pair
|
285 |
for src_lang in track_languages:
|
286 |
for tgt_lang in track_languages:
|
287 |
if src_lang == tgt_lang:
|
288 |
continue
|
289 |
+
|
290 |
pair_data = sample_df[
|
291 |
+
(sample_df["source_language"] == src_lang) &
|
292 |
+
(sample_df["target_language"] == tgt_lang)
|
293 |
]
|
294 |
+
|
295 |
if len(pair_data) >= track_config["min_samples_per_pair"]:
|
296 |
pair_key = f"{src_lang}_to_{tgt_lang}"
|
297 |
pair_metrics[pair_key] = {}
|
298 |
+
|
299 |
# Calculate statistical metrics for each measure
|
300 |
for metric in (
|
301 |
+
METRICS_CONFIG["primary_metrics"] + METRICS_CONFIG["secondary_metrics"]
|
|
|
302 |
):
|
303 |
if metric in pair_data.columns:
|
304 |
+
values = pair_data[metric].replace([np.inf, -np.inf], np.nan).dropna()
|
305 |
+
|
|
|
|
|
|
|
|
|
306 |
if len(values) > 0:
|
307 |
+
stats_metrics = calculate_statistical_metrics(values.tolist())
|
|
|
|
|
308 |
pair_metrics[pair_key][metric] = stats_metrics
|
309 |
+
|
310 |
# Add to overall metrics for track-level statistics
|
311 |
overall_metrics[metric].append(stats_metrics["mean"])
|
312 |
+
|
313 |
pair_metrics[pair_key]["sample_count"] = len(pair_data)
|
314 |
pair_metrics[pair_key]["languages"] = f"{src_lang}-{tgt_lang}"
|
315 |
+
|
316 |
# Calculate track-level aggregated statistics
|
317 |
track_averages = {}
|
318 |
track_statistics = {}
|
319 |
+
|
320 |
for metric in overall_metrics:
|
321 |
if overall_metrics[metric]:
|
322 |
track_stats = calculate_statistical_metrics(overall_metrics[metric])
|
323 |
track_averages[metric] = track_stats["mean"]
|
324 |
track_statistics[metric] = track_stats
|
325 |
+
|
326 |
# Generate evaluation summary
|
327 |
summary = {
|
328 |
"track": track,
|
329 |
"track_name": track_config["name"],
|
330 |
"total_samples": len(sample_df),
|
331 |
+
"language_pairs_evaluated": len([k for k in pair_metrics if pair_metrics[k].get("sample_count", 0) > 0]),
|
332 |
+
"languages_covered": len(set(sample_df["source_language"]) | set(sample_df["target_language"])),
|
|
|
|
|
|
|
|
|
333 |
"min_samples_per_pair": track_config["min_samples_per_pair"],
|
334 |
"statistical_power": track_config["statistical_power"],
|
335 |
"significance_level": track_config["significance_level"],
|
336 |
}
|
337 |
+
|
338 |
return {
|
339 |
"sample_metrics": sample_df,
|
340 |
"pair_metrics": pair_metrics,
|
|
|
351 |
predictions: pd.DataFrame, test_set: pd.DataFrame, model_category: str = "community"
|
352 |
) -> Dict:
|
353 |
"""Comprehensive evaluation across all tracks with scientific rigor."""
|
354 |
+
|
355 |
print("π¬ Starting scientific evaluation...")
|
356 |
+
|
357 |
# Validate model category
|
358 |
if model_category not in MODEL_CATEGORIES:
|
359 |
model_category = "community"
|
360 |
+
|
361 |
evaluation_results = {
|
362 |
"model_category": model_category,
|
363 |
"category_info": MODEL_CATEGORIES[model_category],
|
|
|
369 |
"total_samples_available": len(test_set),
|
370 |
},
|
371 |
}
|
372 |
+
|
373 |
# Evaluate each track
|
374 |
for track_name in EVALUATION_TRACKS.keys():
|
375 |
track_result = evaluate_predictions_by_track(predictions, test_set, track_name)
|
376 |
evaluation_results["tracks"][track_name] = track_result
|
377 |
+
|
378 |
# Cross-track consistency analysis
|
379 |
evaluation_results["cross_track_analysis"] = analyze_cross_track_consistency(
|
380 |
evaluation_results["tracks"]
|
381 |
)
|
382 |
+
|
383 |
return evaluation_results
|
384 |
|
385 |
|
386 |
def analyze_cross_track_consistency(track_results: Dict) -> Dict:
|
387 |
"""Analyze consistency of model performance across different tracks."""
|
388 |
+
|
389 |
consistency_analysis = {
|
390 |
"track_correlations": {},
|
391 |
"performance_stability": {},
|
392 |
"language_coverage_analysis": {},
|
393 |
}
|
394 |
+
|
395 |
# Extract quality scores from each track for correlation analysis
|
396 |
track_scores = {}
|
397 |
for track_name, track_data in track_results.items():
|
398 |
+
if track_data.get("track_averages") and "quality_score" in track_data["track_averages"]:
|
|
|
|
|
|
|
399 |
track_scores[track_name] = track_data["track_averages"]["quality_score"]
|
400 |
+
|
401 |
# Calculate pairwise correlations (would need more data points for meaningful correlation)
|
402 |
if len(track_scores) >= 2:
|
403 |
track_names = list(track_scores.keys())
|
404 |
for i, track1 in enumerate(track_names):
|
405 |
+
for track2 in track_names[i + 1:]:
|
406 |
# This would be more meaningful with multiple models
|
407 |
consistency_analysis["track_correlations"][f"{track1}_vs_{track2}"] = {
|
408 |
+
"score_difference": abs(track_scores[track1] - track_scores[track2]),
|
409 |
+
"relative_performance": track_scores[track1] / max(track_scores[track2], 0.001),
|
|
|
|
|
|
|
410 |
}
|
411 |
+
|
412 |
# Language coverage analysis
|
413 |
for track_name, track_data in track_results.items():
|
414 |
if track_data.get("summary"):
|
415 |
summary = track_data["summary"]
|
416 |
consistency_analysis["language_coverage_analysis"][track_name] = {
|
417 |
+
"coverage_rate": summary["language_pairs_evaluated"] / max(summary.get("total_possible_pairs", 1), 1),
|
418 |
+
"samples_per_pair": summary["total_samples"] / max(summary["language_pairs_evaluated"], 1),
|
419 |
+
"statistical_adequacy": summary["total_samples"] >= EVALUATION_TRACKS[track_name]["min_samples_per_pair"] * summary["language_pairs_evaluated"],
|
|
|
|
|
|
|
|
|
420 |
}
|
421 |
+
|
422 |
return consistency_analysis
|
423 |
|
424 |
|
|
|
426 |
model1_results: Dict, model2_results: Dict, track: str = "google_comparable"
|
427 |
) -> Dict:
|
428 |
"""Perform statistical comparison between two models on a specific track."""
|
429 |
+
|
430 |
+
if track not in model1_results.get("tracks", {}) or track not in model2_results.get("tracks", {}):
|
|
|
|
|
431 |
return {"error": f"Track {track} not available for both models"}
|
432 |
+
|
433 |
track1_data = model1_results["tracks"][track]
|
434 |
track2_data = model2_results["tracks"][track]
|
435 |
+
|
436 |
if track1_data.get("error") or track2_data.get("error"):
|
437 |
return {"error": "One or both models have evaluation errors"}
|
438 |
+
|
439 |
comparison_results = {
|
440 |
"track": track,
|
441 |
"model1_category": model1_results.get("model_category", "unknown"),
|
|
|
444 |
"language_pair_comparisons": {},
|
445 |
"overall_significance": {},
|
446 |
}
|
447 |
+
|
448 |
# Compare each metric
|
449 |
+
for metric in METRICS_CONFIG["primary_metrics"] + METRICS_CONFIG["secondary_metrics"]:
|
450 |
+
if (metric in track1_data.get("track_statistics", {}) and
|
451 |
+
metric in track2_data.get("track_statistics", {})):
|
452 |
+
|
|
|
|
|
|
|
453 |
# Extract sample-level data for this metric from both models
|
454 |
# This would require access to the original sample metrics
|
455 |
# For now, we'll use the aggregated statistics
|
456 |
+
|
457 |
stats1 = track1_data["track_statistics"][metric]
|
458 |
stats2 = track2_data["track_statistics"][metric]
|
459 |
+
|
460 |
# Create comparison summary
|
461 |
comparison_results["metric_comparisons"][metric] = {
|
462 |
"model1_mean": stats1["mean"],
|
|
|
464 |
"model2_mean": stats2["mean"],
|
465 |
"model2_ci": [stats2["ci_lower"], stats2["ci_upper"]],
|
466 |
"difference": stats1["mean"] - stats2["mean"],
|
467 |
+
"ci_overlap": not (stats1["ci_upper"] < stats2["ci_lower"] or
|
468 |
+
stats2["ci_upper"] < stats1["ci_lower"]),
|
|
|
|
|
469 |
}
|
470 |
+
|
471 |
return comparison_results
|
472 |
|
473 |
|
|
|
475 |
results: Dict, model_name: str = "", baseline_results: Dict = None
|
476 |
) -> str:
|
477 |
"""Generate a comprehensive scientific evaluation report."""
|
478 |
+
|
479 |
+
if any(track_data.get("error") for track_data in results.get("tracks", {}).values()):
|
|
|
|
|
480 |
return f"β **Evaluation Error**: Unable to complete scientific evaluation"
|
481 |
+
|
482 |
report = []
|
483 |
+
|
484 |
# Header
|
485 |
report.append(f"# π¬ Scientific Evaluation Report: {model_name or 'Model'}")
|
486 |
report.append("")
|
487 |
+
|
488 |
# Model categorization
|
489 |
category_info = results.get("category_info", {})
|
490 |
report.append(f"**Model Category**: {category_info.get('name', 'Unknown')}")
|
491 |
+
report.append(f"**Category Description**: {category_info.get('description', 'N/A')}")
|
|
|
|
|
492 |
report.append("")
|
493 |
+
|
494 |
# Track-by-track analysis
|
495 |
for track_name, track_data in results.get("tracks", {}).items():
|
496 |
if track_data.get("error"):
|
497 |
continue
|
498 |
+
|
499 |
track_config = EVALUATION_TRACKS[track_name]
|
500 |
summary = track_data.get("summary", {})
|
501 |
track_stats = track_data.get("track_statistics", {})
|
502 |
+
|
503 |
report.append(f"## {track_config['name']}")
|
504 |
report.append(f"*{track_config['description']}*")
|
505 |
report.append("")
|
506 |
+
|
507 |
# Summary statistics
|
508 |
report.append("### π Summary Statistics")
|
509 |
report.append(f"- **Samples Evaluated**: {summary.get('total_samples', 0):,}")
|
510 |
+
report.append(f"- **Language Pairs**: {summary.get('language_pairs_evaluated', 0)}")
|
|
|
|
|
511 |
report.append(f"- **Languages Covered**: {summary.get('languages_covered', 0)}")
|
512 |
report.append(f"- **Statistical Power**: {track_config['statistical_power']}")
|
513 |
report.append("")
|
514 |
+
|
515 |
# Primary metrics with confidence intervals
|
516 |
report.append("### π― Primary Metrics (95% Confidence Intervals)")
|
517 |
for metric in METRICS_CONFIG["primary_metrics"]:
|
|
|
520 |
mean_val = stats["mean"]
|
521 |
ci_lower = stats["ci_lower"]
|
522 |
ci_upper = stats["ci_upper"]
|
523 |
+
|
524 |
+
report.append(f"- **{metric.upper()}**: {mean_val:.4f} [{ci_lower:.4f}, {ci_upper:.4f}]")
|
|
|
|
|
525 |
report.append("")
|
526 |
+
|
527 |
# Statistical adequacy assessment
|
528 |
+
min_required = track_config["min_samples_per_pair"] * summary.get("language_pairs_evaluated", 0)
|
529 |
+
adequacy = "β
Adequate" if summary.get("total_samples", 0) >= min_required else "β οΈ Limited"
|
|
|
|
|
|
|
|
|
|
|
|
|
530 |
report.append(f"**Statistical Adequacy**: {adequacy}")
|
531 |
report.append("")
|
532 |
+
|
533 |
# Cross-track analysis
|
534 |
cross_track = results.get("cross_track_analysis", {})
|
535 |
if cross_track:
|
536 |
report.append("## π Cross-Track Consistency Analysis")
|
537 |
+
|
538 |
coverage_analysis = cross_track.get("language_coverage_analysis", {})
|
539 |
for track_name, coverage_info in coverage_analysis.items():
|
540 |
+
adequacy = "β
Statistically adequate" if coverage_info.get("statistical_adequacy") else "β οΈ Limited statistical power"
|
|
|
|
|
|
|
|
|
541 |
report.append(f"- **{track_name}**: {adequacy}")
|
542 |
+
|
543 |
report.append("")
|
544 |
+
|
545 |
# Baseline comparison if available
|
546 |
if baseline_results:
|
547 |
report.append("## π Baseline Comparison")
|
548 |
# This would include detailed statistical comparisons
|
549 |
report.append("*Statistical comparison with baseline models*")
|
550 |
report.append("")
|
551 |
+
|
552 |
# Scientific recommendations
|
553 |
report.append("## π‘ Scientific Recommendations")
|
554 |
+
|
555 |
total_samples = sum(
|
556 |
track_data.get("summary", {}).get("total_samples", 0)
|
557 |
for track_data in results.get("tracks", {}).values()
|
558 |
if not track_data.get("error")
|
559 |
)
|
560 |
+
|
561 |
if total_samples < SAMPLE_SIZE_RECOMMENDATIONS["publication_quality"]:
|
562 |
+
report.append("- β οΈ Consider collecting more evaluation samples for publication-quality results")
|
563 |
+
|
|
|
|
|
564 |
google_track = results.get("tracks", {}).get("google_comparable", {})
|
565 |
+
if not google_track.get("error") and google_track.get("summary", {}).get("total_samples", 0) > 100:
|
|
|
|
|
|
|
566 |
report.append("- β
Sufficient data for comparison with commercial systems")
|
567 |
+
|
568 |
report.append("")
|
569 |
+
|
570 |
+
return "\n".join(report)
|