Spaces:
Running
Running
Update src/leaderboard.py
Browse files- src/leaderboard.py +114 -29
src/leaderboard.py
CHANGED
@@ -118,6 +118,88 @@ def save_leaderboard(df: pd.DataFrame) -> bool:
|
|
118 |
print(f"Error saving leaderboard: {e}")
|
119 |
return False
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
def add_model_to_leaderboard(
|
122 |
model_name: str,
|
123 |
author: str,
|
@@ -126,23 +208,31 @@ def add_model_to_leaderboard(
|
|
126 |
model_type: str = "",
|
127 |
description: str = ""
|
128 |
) -> pd.DataFrame:
|
129 |
-
"""
|
130 |
-
|
|
|
131 |
# Load current leaderboard
|
132 |
df = load_leaderboard()
|
133 |
-
|
134 |
-
#
|
135 |
existing_mask = df['model_name'] == model_name
|
136 |
if existing_mask.any():
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
# Extract metrics
|
141 |
averages = evaluation_results.get('averages', {})
|
142 |
google_averages = evaluation_results.get('google_comparable_averages', {})
|
143 |
summary = evaluation_results.get('summary', {})
|
144 |
-
|
145 |
-
#
|
146 |
new_entry = {
|
147 |
'submission_id': create_submission_id(),
|
148 |
'model_name': sanitize_model_name(model_name),
|
@@ -150,12 +240,12 @@ def add_model_to_leaderboard(
|
|
150 |
'submission_date': datetime.datetime.now().isoformat(),
|
151 |
'model_type': model_type[:50] if model_type else 'unknown',
|
152 |
'description': description[:500] if description else '',
|
153 |
-
|
154 |
# Primary metrics
|
155 |
'quality_score': float(averages.get('quality_score', 0.0)),
|
156 |
'bleu': float(averages.get('bleu', 0.0)),
|
157 |
'chrf': float(averages.get('chrf', 0.0)),
|
158 |
-
|
159 |
# Secondary metrics
|
160 |
'rouge1': float(averages.get('rouge1', 0.0)),
|
161 |
'rouge2': float(averages.get('rouge2', 0.0)),
|
@@ -163,41 +253,36 @@ def add_model_to_leaderboard(
|
|
163 |
'cer': float(averages.get('cer', 0.0)),
|
164 |
'wer': float(averages.get('wer', 0.0)),
|
165 |
'len_ratio': float(averages.get('len_ratio', 0.0)),
|
166 |
-
|
167 |
# Google comparable metrics
|
168 |
'google_quality_score': float(google_averages.get('quality_score', 0.0)),
|
169 |
'google_bleu': float(google_averages.get('bleu', 0.0)),
|
170 |
'google_chrf': float(google_averages.get('chrf', 0.0)),
|
171 |
-
|
172 |
# Coverage info
|
173 |
'total_samples': int(summary.get('total_samples', 0)),
|
174 |
'language_pairs_covered': int(summary.get('language_pairs_covered', 0)),
|
175 |
'google_pairs_covered': int(summary.get('google_comparable_pairs', 0)),
|
176 |
'coverage_rate': float(validation_info.get('coverage', 0.0)),
|
177 |
-
|
178 |
-
# Detailed results
|
179 |
-
'detailed_metrics':
|
180 |
'validation_report': validation_info.get('report', ''),
|
181 |
-
|
182 |
# Metadata
|
183 |
'evaluation_date': datetime.datetime.now().isoformat(),
|
184 |
'leaderboard_version': 1
|
185 |
}
|
186 |
-
|
187 |
-
#
|
188 |
new_row_df = pd.DataFrame([new_entry])
|
189 |
updated_df = pd.concat([df, new_row_df], ignore_index=True)
|
190 |
-
|
191 |
-
# Sort by quality score (descending)
|
192 |
updated_df = updated_df.sort_values('quality_score', ascending=False).reset_index(drop=True)
|
193 |
-
|
194 |
-
# Save
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
else:
|
199 |
-
print("Failed to save leaderboard")
|
200 |
-
return df
|
201 |
|
202 |
def get_leaderboard_stats(df: pd.DataFrame) -> Dict:
|
203 |
"""Get summary statistics for the leaderboard."""
|
|
|
118 |
print(f"Error saving leaderboard: {e}")
|
119 |
return False
|
120 |
|
121 |
+
# def add_model_to_leaderboard(
|
122 |
+
# model_name: str,
|
123 |
+
# author: str,
|
124 |
+
# evaluation_results: Dict,
|
125 |
+
# validation_info: Dict,
|
126 |
+
# model_type: str = "",
|
127 |
+
# description: str = ""
|
128 |
+
# ) -> pd.DataFrame:
|
129 |
+
# """Add new model results to leaderboard."""
|
130 |
+
|
131 |
+
# # Load current leaderboard
|
132 |
+
# df = load_leaderboard()
|
133 |
+
|
134 |
+
# # Check if model already exists
|
135 |
+
# existing_mask = df['model_name'] == model_name
|
136 |
+
# if existing_mask.any():
|
137 |
+
# print(f"Model '{model_name}' already exists. Updating...")
|
138 |
+
# df = df[~existing_mask] # Remove existing entry
|
139 |
+
|
140 |
+
# # Extract metrics
|
141 |
+
# averages = evaluation_results.get('averages', {})
|
142 |
+
# google_averages = evaluation_results.get('google_comparable_averages', {})
|
143 |
+
# summary = evaluation_results.get('summary', {})
|
144 |
+
|
145 |
+
# # Create new entry
|
146 |
+
# new_entry = {
|
147 |
+
# 'submission_id': create_submission_id(),
|
148 |
+
# 'model_name': sanitize_model_name(model_name),
|
149 |
+
# 'author': author[:100] if author else 'Anonymous',
|
150 |
+
# 'submission_date': datetime.datetime.now().isoformat(),
|
151 |
+
# 'model_type': model_type[:50] if model_type else 'unknown',
|
152 |
+
# 'description': description[:500] if description else '',
|
153 |
+
|
154 |
+
# # Primary metrics
|
155 |
+
# 'quality_score': float(averages.get('quality_score', 0.0)),
|
156 |
+
# 'bleu': float(averages.get('bleu', 0.0)),
|
157 |
+
# 'chrf': float(averages.get('chrf', 0.0)),
|
158 |
+
|
159 |
+
# # Secondary metrics
|
160 |
+
# 'rouge1': float(averages.get('rouge1', 0.0)),
|
161 |
+
# 'rouge2': float(averages.get('rouge2', 0.0)),
|
162 |
+
# 'rougeL': float(averages.get('rougeL', 0.0)),
|
163 |
+
# 'cer': float(averages.get('cer', 0.0)),
|
164 |
+
# 'wer': float(averages.get('wer', 0.0)),
|
165 |
+
# 'len_ratio': float(averages.get('len_ratio', 0.0)),
|
166 |
+
|
167 |
+
# # Google comparable metrics
|
168 |
+
# 'google_quality_score': float(google_averages.get('quality_score', 0.0)),
|
169 |
+
# 'google_bleu': float(google_averages.get('bleu', 0.0)),
|
170 |
+
# 'google_chrf': float(google_averages.get('chrf', 0.0)),
|
171 |
+
|
172 |
+
# # Coverage info
|
173 |
+
# 'total_samples': int(summary.get('total_samples', 0)),
|
174 |
+
# 'language_pairs_covered': int(summary.get('language_pairs_covered', 0)),
|
175 |
+
# 'google_pairs_covered': int(summary.get('google_comparable_pairs', 0)),
|
176 |
+
# 'coverage_rate': float(validation_info.get('coverage', 0.0)),
|
177 |
+
|
178 |
+
# # Detailed results
|
179 |
+
# 'detailed_metrics': json.dumps(evaluation_results),
|
180 |
+
# 'validation_report': validation_info.get('report', ''),
|
181 |
+
|
182 |
+
# # Metadata
|
183 |
+
# 'evaluation_date': datetime.datetime.now().isoformat(),
|
184 |
+
# 'leaderboard_version': 1
|
185 |
+
# }
|
186 |
+
|
187 |
+
# # Add to dataframe
|
188 |
+
# new_row_df = pd.DataFrame([new_entry])
|
189 |
+
# updated_df = pd.concat([df, new_row_df], ignore_index=True)
|
190 |
+
|
191 |
+
# # Sort by quality score (descending)
|
192 |
+
# updated_df = updated_df.sort_values('quality_score', ascending=False).reset_index(drop=True)
|
193 |
+
|
194 |
+
# # Save updated leaderboard
|
195 |
+
# if save_leaderboard(updated_df):
|
196 |
+
# print(f"Added '{model_name}' to leaderboard")
|
197 |
+
# return updated_df
|
198 |
+
# else:
|
199 |
+
# print("Failed to save leaderboard")
|
200 |
+
# return df
|
201 |
+
|
202 |
+
|
203 |
def add_model_to_leaderboard(
|
204 |
model_name: str,
|
205 |
author: str,
|
|
|
208 |
model_type: str = "",
|
209 |
description: str = ""
|
210 |
) -> pd.DataFrame:
|
211 |
+
"""
|
212 |
+
Add new model results to leaderboard, with JSON-safe detailed_metrics.
|
213 |
+
"""
|
214 |
# Load current leaderboard
|
215 |
df = load_leaderboard()
|
216 |
+
|
217 |
+
# Remove existing entry if present
|
218 |
existing_mask = df['model_name'] == model_name
|
219 |
if existing_mask.any():
|
220 |
+
df = df[~existing_mask]
|
221 |
+
|
222 |
+
# Safely serialize evaluation_results by dropping non-JSON types
|
223 |
+
safe_results = evaluation_results.copy()
|
224 |
+
# Remove sample_metrics DataFrame which isn't JSON serializable
|
225 |
+
if 'sample_metrics' in safe_results:
|
226 |
+
safe_results.pop('sample_metrics')
|
227 |
+
|
228 |
+
detailed_json = json.dumps(safe_results)
|
229 |
+
|
230 |
# Extract metrics
|
231 |
averages = evaluation_results.get('averages', {})
|
232 |
google_averages = evaluation_results.get('google_comparable_averages', {})
|
233 |
summary = evaluation_results.get('summary', {})
|
234 |
+
|
235 |
+
# Prepare new entry
|
236 |
new_entry = {
|
237 |
'submission_id': create_submission_id(),
|
238 |
'model_name': sanitize_model_name(model_name),
|
|
|
240 |
'submission_date': datetime.datetime.now().isoformat(),
|
241 |
'model_type': model_type[:50] if model_type else 'unknown',
|
242 |
'description': description[:500] if description else '',
|
243 |
+
|
244 |
# Primary metrics
|
245 |
'quality_score': float(averages.get('quality_score', 0.0)),
|
246 |
'bleu': float(averages.get('bleu', 0.0)),
|
247 |
'chrf': float(averages.get('chrf', 0.0)),
|
248 |
+
|
249 |
# Secondary metrics
|
250 |
'rouge1': float(averages.get('rouge1', 0.0)),
|
251 |
'rouge2': float(averages.get('rouge2', 0.0)),
|
|
|
253 |
'cer': float(averages.get('cer', 0.0)),
|
254 |
'wer': float(averages.get('wer', 0.0)),
|
255 |
'len_ratio': float(averages.get('len_ratio', 0.0)),
|
256 |
+
|
257 |
# Google comparable metrics
|
258 |
'google_quality_score': float(google_averages.get('quality_score', 0.0)),
|
259 |
'google_bleu': float(google_averages.get('bleu', 0.0)),
|
260 |
'google_chrf': float(google_averages.get('chrf', 0.0)),
|
261 |
+
|
262 |
# Coverage info
|
263 |
'total_samples': int(summary.get('total_samples', 0)),
|
264 |
'language_pairs_covered': int(summary.get('language_pairs_covered', 0)),
|
265 |
'google_pairs_covered': int(summary.get('google_comparable_pairs', 0)),
|
266 |
'coverage_rate': float(validation_info.get('coverage', 0.0)),
|
267 |
+
|
268 |
+
# Detailed results (JSON string)
|
269 |
+
'detailed_metrics': detailed_json,
|
270 |
'validation_report': validation_info.get('report', ''),
|
271 |
+
|
272 |
# Metadata
|
273 |
'evaluation_date': datetime.datetime.now().isoformat(),
|
274 |
'leaderboard_version': 1
|
275 |
}
|
276 |
+
|
277 |
+
# Convert to DataFrame and append
|
278 |
new_row_df = pd.DataFrame([new_entry])
|
279 |
updated_df = pd.concat([df, new_row_df], ignore_index=True)
|
|
|
|
|
280 |
updated_df = updated_df.sort_values('quality_score', ascending=False).reset_index(drop=True)
|
281 |
+
|
282 |
+
# Save to hub
|
283 |
+
save_leaderboard(updated_df)
|
284 |
+
|
285 |
+
return updated_df
|
|
|
|
|
|
|
286 |
|
287 |
def get_leaderboard_stats(df: pd.DataFrame) -> Dict:
|
288 |
"""Get summary statistics for the leaderboard."""
|