Spaces:
Sleeping
Sleeping
Update src/test_set.py
Browse files- src/test_set.py +629 -156
src/test_set.py
CHANGED
@@ -2,32 +2,42 @@
|
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import yaml
|
|
|
5 |
from datasets import load_dataset
|
6 |
from config import (
|
7 |
TEST_SET_DATASET,
|
8 |
SALT_DATASET,
|
9 |
MAX_TEST_SAMPLES,
|
10 |
HF_TOKEN,
|
11 |
-
MIN_SAMPLES_PER_PAIR,
|
12 |
ALL_UG40_LANGUAGES,
|
13 |
-
GOOGLE_SUPPORTED_LANGUAGES
|
|
|
|
|
|
|
14 |
)
|
15 |
import salt.dataset
|
16 |
-
from src.utils import get_all_language_pairs
|
17 |
|
18 |
# Local CSV filenames for persistence
|
19 |
-
LOCAL_PUBLIC_CSV = "
|
20 |
-
LOCAL_COMPLETE_CSV = "
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
try:
|
29 |
-
# Build SALT dataset config
|
30 |
-
dataset_config = f
|
31 |
huggingface_load:
|
32 |
path: {SALT_DATASET}
|
33 |
name: text-all
|
@@ -39,7 +49,7 @@ def generate_test_set(max_samples_per_pair: int = MAX_TEST_SAMPLES) -> pd.DataFr
|
|
39 |
type: text
|
40 |
language: {ALL_UG40_LANGUAGES}
|
41 |
allow_same_src_and_tgt_language: False
|
42 |
-
|
43 |
|
44 |
config = yaml.safe_load(dataset_config)
|
45 |
print("📥 Loading SALT dataset...")
|
@@ -50,40 +60,65 @@ def generate_test_set(max_samples_per_pair: int = MAX_TEST_SAMPLES) -> pd.DataFr
|
|
50 |
test_samples = []
|
51 |
sample_id_counter = 1
|
52 |
|
53 |
-
#
|
|
|
|
|
|
|
54 |
for src_lang in ALL_UG40_LANGUAGES:
|
55 |
for tgt_lang in ALL_UG40_LANGUAGES:
|
56 |
if src_lang == tgt_lang:
|
57 |
continue
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# Filter for this language pair
|
60 |
pair_data = full_data[
|
61 |
-
(full_data[
|
62 |
-
(full_data[
|
63 |
]
|
64 |
|
65 |
if pair_data.empty:
|
66 |
print(f"⚠️ No data found for {src_lang} → {tgt_lang}")
|
67 |
continue
|
68 |
|
69 |
-
#
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
print(f"✅ {src_lang} → {tgt_lang}: {
|
74 |
|
75 |
for _, row in sampled.iterrows():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
test_samples.append({
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
src_lang in GOOGLE_SUPPORTED_LANGUAGES and
|
85 |
tgt_lang in GOOGLE_SUPPORTED_LANGUAGES
|
86 |
-
)
|
|
|
|
|
|
|
|
|
87 |
})
|
88 |
sample_id_counter += 1
|
89 |
|
@@ -91,78 +126,315 @@ def generate_test_set(max_samples_per_pair: int = MAX_TEST_SAMPLES) -> pd.DataFr
|
|
91 |
|
92 |
if test_df.empty:
|
93 |
raise ValueError("No test samples generated - check SALT dataset availability")
|
94 |
-
|
95 |
-
print(f"✅ Generated test set: {len(test_df):,} samples across {len(test_df.groupby(['source_language', 'target_language'])):,} pairs")
|
96 |
|
97 |
-
#
|
98 |
-
|
99 |
-
unique_pairs = len(test_df.groupby(['source_language', 'target_language']))
|
100 |
|
101 |
-
print(f"
|
102 |
-
print(f"
|
103 |
-
print(f" - Language pairs: {unique_pairs}")
|
104 |
-
print(f" - Google comparable: {google_samples:,} samples")
|
105 |
-
print(f" - UG40 only: {len(test_df) - google_samples:,} samples")
|
106 |
|
107 |
return test_df
|
108 |
|
109 |
except Exception as e:
|
110 |
-
print(f"❌ Error generating test set: {e}")
|
111 |
-
# Return empty DataFrame with correct structure
|
112 |
return pd.DataFrame(columns=[
|
113 |
-
|
114 |
-
|
|
|
115 |
])
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
if full_df.empty:
|
126 |
-
print("❌ Failed to generate test set")
|
127 |
-
# Return empty DataFrames with correct structure
|
128 |
empty_public = pd.DataFrame(columns=[
|
129 |
-
|
130 |
-
|
|
|
131 |
])
|
132 |
empty_complete = pd.DataFrame(columns=[
|
133 |
-
|
134 |
-
|
|
|
135 |
])
|
136 |
return empty_public, empty_complete
|
137 |
|
138 |
# Public version (no target_text)
|
139 |
public_df = full_df[[
|
140 |
-
|
141 |
-
|
|
|
142 |
]].copy()
|
143 |
|
144 |
-
# Save
|
145 |
try:
|
146 |
public_df.to_csv(LOCAL_PUBLIC_CSV, index=False)
|
147 |
full_df.to_csv(LOCAL_COMPLETE_CSV, index=False)
|
148 |
-
print(f"✅ Saved
|
149 |
except Exception as e:
|
150 |
-
print(f"⚠️ Error saving CSVs: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
return public_df, full_df
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
Load the public test set
|
157 |
-
|
158 |
-
"""
|
159 |
# 1) Try HF Hub
|
160 |
try:
|
161 |
-
print("📥 Attempting to load
|
162 |
-
ds = load_dataset(TEST_SET_DATASET, split="train", token=HF_TOKEN)
|
163 |
df = ds.to_pandas()
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
except Exception as e:
|
167 |
print(f"⚠️ HF Hub load failed: {e}")
|
168 |
|
@@ -170,150 +442,351 @@ def get_public_test_set() -> pd.DataFrame:
|
|
170 |
if os.path.exists(LOCAL_PUBLIC_CSV):
|
171 |
try:
|
172 |
df = pd.read_csv(LOCAL_PUBLIC_CSV)
|
173 |
-
|
174 |
-
# Validate basic structure
|
175 |
-
required_cols = ['sample_id', 'source_text', 'source_language', 'target_language']
|
176 |
if all(col in df.columns for col in required_cols):
|
|
|
177 |
return df
|
178 |
else:
|
179 |
print("⚠️ Local CSV has invalid structure, regenerating...")
|
180 |
except Exception as e:
|
181 |
-
print(f"⚠️ Failed to read local CSV: {e}")
|
182 |
|
183 |
# 3) Regenerate & save
|
184 |
-
print("🔄 Generating new
|
185 |
-
public_df, _ =
|
186 |
return public_df
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
Load the complete test set
|
191 |
-
|
192 |
-
"""
|
193 |
# 1) Try HF Hub private
|
194 |
try:
|
195 |
-
print("📥 Attempting to load complete test set from HF Hub
|
196 |
-
ds = load_dataset(TEST_SET_DATASET + "-private", split="train", token=HF_TOKEN)
|
197 |
df = ds.to_pandas()
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
except Exception as e:
|
201 |
-
print(f"⚠️ HF Hub
|
202 |
|
203 |
# 2) Try local CSV
|
204 |
if os.path.exists(LOCAL_COMPLETE_CSV):
|
205 |
try:
|
206 |
df = pd.read_csv(LOCAL_COMPLETE_CSV)
|
207 |
-
|
208 |
-
# Validate basic structure
|
209 |
-
required_cols = ['sample_id', 'source_text', 'target_text', 'source_language', 'target_language']
|
210 |
if all(col in df.columns for col in required_cols):
|
|
|
211 |
return df
|
212 |
else:
|
213 |
-
print("⚠️ Local CSV has invalid structure, regenerating...")
|
214 |
except Exception as e:
|
215 |
-
print(f"⚠️ Failed to read local complete CSV: {e}")
|
216 |
|
217 |
# 3) Regenerate & save
|
218 |
-
print("🔄 Generating new complete test set...")
|
219 |
-
_, complete_df =
|
220 |
return complete_df
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
if public_df.empty:
|
229 |
-
# Create minimal stats for empty dataset
|
230 |
stats = {
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
'domains': []
|
236 |
}
|
237 |
return LOCAL_PUBLIC_CSV, stats
|
238 |
|
239 |
download_path = LOCAL_PUBLIC_CSV
|
|
|
240 |
# Ensure the CSV is up-to-date
|
241 |
try:
|
242 |
public_df.to_csv(download_path, index=False)
|
243 |
except Exception as e:
|
244 |
-
print(f"⚠️ Error updating CSV: {e}")
|
245 |
|
246 |
-
# Calculate statistics
|
247 |
try:
|
|
|
248 |
stats = {
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
}
|
|
|
255 |
except Exception as e:
|
256 |
-
print(f"⚠️ Error calculating stats: {e}")
|
257 |
stats = {
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
'domains': []
|
263 |
}
|
264 |
|
265 |
return download_path, stats
|
266 |
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
try:
|
272 |
-
public_df =
|
273 |
-
complete_df =
|
274 |
|
275 |
if public_df.empty or complete_df.empty:
|
276 |
return {
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
}
|
283 |
|
284 |
-
public_ids = set(public_df[
|
285 |
-
private_ids = set(complete_df[
|
286 |
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
]
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
return {
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
310 |
}
|
311 |
|
312 |
except Exception as e:
|
313 |
return {
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import yaml
|
5 |
+
import numpy as np
|
6 |
from datasets import load_dataset
|
7 |
from config import (
|
8 |
TEST_SET_DATASET,
|
9 |
SALT_DATASET,
|
10 |
MAX_TEST_SAMPLES,
|
11 |
HF_TOKEN,
|
|
|
12 |
ALL_UG40_LANGUAGES,
|
13 |
+
GOOGLE_SUPPORTED_LANGUAGES,
|
14 |
+
EVALUATION_TRACKS,
|
15 |
+
SAMPLE_SIZE_RECOMMENDATIONS,
|
16 |
+
STATISTICAL_CONFIG,
|
17 |
)
|
18 |
import salt.dataset
|
19 |
+
from src.utils import get_all_language_pairs, get_track_language_pairs
|
20 |
|
21 |
# Local CSV filenames for persistence
|
22 |
+
LOCAL_PUBLIC_CSV = "salt_test_set_scientific.csv"
|
23 |
+
LOCAL_COMPLETE_CSV = "salt_complete_test_set_scientific.csv"
|
24 |
+
LOCAL_TRACK_CSVS = {
|
25 |
+
track: f"salt_test_set_{track}.csv" for track in EVALUATION_TRACKS.keys()
|
26 |
+
}
|
27 |
|
28 |
+
|
29 |
+
def generate_scientific_test_set(
|
30 |
+
max_samples_per_pair: int = MAX_TEST_SAMPLES,
|
31 |
+
stratified_sampling: bool = True,
|
32 |
+
balance_tracks: bool = True,
|
33 |
+
) -> pd.DataFrame:
|
34 |
+
"""Generate scientifically rigorous test set with stratified sampling."""
|
35 |
+
|
36 |
+
print("🔬 Generating scientific SALT test set...")
|
37 |
|
38 |
try:
|
39 |
+
# Build SALT dataset config
|
40 |
+
dataset_config = f"""
|
41 |
huggingface_load:
|
42 |
path: {SALT_DATASET}
|
43 |
name: text-all
|
|
|
49 |
type: text
|
50 |
language: {ALL_UG40_LANGUAGES}
|
51 |
allow_same_src_and_tgt_language: False
|
52 |
+
"""
|
53 |
|
54 |
config = yaml.safe_load(dataset_config)
|
55 |
print("📥 Loading SALT dataset...")
|
|
|
60 |
test_samples = []
|
61 |
sample_id_counter = 1
|
62 |
|
63 |
+
# Calculate target samples per track for balanced evaluation
|
64 |
+
track_targets = calculate_track_sampling_targets(balance_tracks)
|
65 |
+
|
66 |
+
# Generate samples for each language pair with stratified sampling
|
67 |
for src_lang in ALL_UG40_LANGUAGES:
|
68 |
for tgt_lang in ALL_UG40_LANGUAGES:
|
69 |
if src_lang == tgt_lang:
|
70 |
continue
|
71 |
+
|
72 |
+
# Determine target sample size for this pair
|
73 |
+
pair_targets = calculate_pair_sampling_targets(
|
74 |
+
src_lang, tgt_lang, track_targets, max_samples_per_pair
|
75 |
+
)
|
76 |
+
|
77 |
+
target_samples = max(pair_targets.values()) if pair_targets else max_samples_per_pair
|
78 |
+
|
79 |
# Filter for this language pair
|
80 |
pair_data = full_data[
|
81 |
+
(full_data["source.language"] == src_lang) &
|
82 |
+
(full_data["target.language"] == tgt_lang)
|
83 |
]
|
84 |
|
85 |
if pair_data.empty:
|
86 |
print(f"⚠️ No data found for {src_lang} → {tgt_lang}")
|
87 |
continue
|
88 |
|
89 |
+
# Stratified sampling if enabled
|
90 |
+
if stratified_sampling and len(pair_data) > target_samples:
|
91 |
+
sampled = stratified_sample_pair_data(pair_data, target_samples)
|
92 |
+
else:
|
93 |
+
# Simple random sampling
|
94 |
+
n_samples = min(len(pair_data), target_samples)
|
95 |
+
sampled = pair_data.sample(n=n_samples, random_state=42)
|
96 |
|
97 |
+
print(f"✅ {src_lang} → {tgt_lang}: {len(sampled)} samples")
|
98 |
|
99 |
for _, row in sampled.iterrows():
|
100 |
+
# Determine which tracks include this pair
|
101 |
+
tracks_included = []
|
102 |
+
for track_name, track_config in EVALUATION_TRACKS.items():
|
103 |
+
if (src_lang in track_config["languages"] and
|
104 |
+
tgt_lang in track_config["languages"]):
|
105 |
+
tracks_included.append(track_name)
|
106 |
+
|
107 |
test_samples.append({
|
108 |
+
"sample_id": f"salt_{sample_id_counter:06d}",
|
109 |
+
"source_text": row["source"],
|
110 |
+
"target_text": row["target"],
|
111 |
+
"source_language": src_lang,
|
112 |
+
"target_language": tgt_lang,
|
113 |
+
"domain": row.get("domain", "general"),
|
114 |
+
"google_comparable": (
|
115 |
src_lang in GOOGLE_SUPPORTED_LANGUAGES and
|
116 |
tgt_lang in GOOGLE_SUPPORTED_LANGUAGES
|
117 |
+
),
|
118 |
+
"tracks_included": ",".join(tracks_included),
|
119 |
+
"statistical_weight": calculate_statistical_weight(
|
120 |
+
src_lang, tgt_lang, tracks_included
|
121 |
+
),
|
122 |
})
|
123 |
sample_id_counter += 1
|
124 |
|
|
|
126 |
|
127 |
if test_df.empty:
|
128 |
raise ValueError("No test samples generated - check SALT dataset availability")
|
|
|
|
|
129 |
|
130 |
+
# Validate scientific adequacy
|
131 |
+
adequacy_report = validate_test_set_scientific_adequacy(test_df)
|
|
|
132 |
|
133 |
+
print(f"✅ Generated scientific test set: {len(test_df):,} samples")
|
134 |
+
print(f"📈 Test set adequacy: {adequacy_report['overall_adequacy']}")
|
|
|
|
|
|
|
135 |
|
136 |
return test_df
|
137 |
|
138 |
except Exception as e:
|
139 |
+
print(f"❌ Error generating scientific test set: {e}")
|
|
|
140 |
return pd.DataFrame(columns=[
|
141 |
+
"sample_id", "source_text", "target_text", "source_language",
|
142 |
+
"target_language", "domain", "google_comparable", "tracks_included",
|
143 |
+
"statistical_weight"
|
144 |
])
|
145 |
|
146 |
+
|
147 |
+
def calculate_track_sampling_targets(balance_tracks: bool) -> Dict[str, int]:
|
148 |
+
"""Calculate target sample sizes for each track to ensure statistical adequacy."""
|
149 |
+
|
150 |
+
track_targets = {}
|
151 |
|
152 |
+
for track_name, track_config in EVALUATION_TRACKS.items():
|
153 |
+
# Base requirement from config
|
154 |
+
min_per_pair = track_config["min_samples_per_pair"]
|
155 |
+
|
156 |
+
# Number of language pairs in this track
|
157 |
+
n_pairs = len(track_config["languages"]) * (len(track_config["languages"]) - 1)
|
158 |
+
|
159 |
+
# Calculate total samples needed for statistical adequacy
|
160 |
+
if balance_tracks:
|
161 |
+
# Use publication-quality recommendation
|
162 |
+
target_per_pair = max(
|
163 |
+
min_per_pair,
|
164 |
+
SAMPLE_SIZE_RECOMMENDATIONS["publication_quality"] // n_pairs
|
165 |
+
)
|
166 |
+
else:
|
167 |
+
target_per_pair = min_per_pair
|
168 |
+
|
169 |
+
track_targets[track_name] = target_per_pair * n_pairs
|
170 |
+
|
171 |
+
print(f"📊 {track_name}: targeting {target_per_pair} samples/pair × {n_pairs} pairs = {track_targets[track_name]} total")
|
172 |
+
|
173 |
+
return track_targets
|
174 |
+
|
175 |
+
|
176 |
+
def calculate_pair_sampling_targets(
|
177 |
+
src_lang: str, tgt_lang: str, track_targets: Dict[str, int], max_samples: int
|
178 |
+
) -> Dict[str, int]:
|
179 |
+
"""Calculate sampling targets for a specific language pair across tracks."""
|
180 |
+
|
181 |
+
pair_targets = {}
|
182 |
+
|
183 |
+
for track_name, track_config in EVALUATION_TRACKS.items():
|
184 |
+
if (src_lang in track_config["languages"] and
|
185 |
+
tgt_lang in track_config["languages"]):
|
186 |
+
|
187 |
+
n_pairs_in_track = len(track_config["languages"]) * (len(track_config["languages"]) - 1)
|
188 |
+
target_per_pair = track_targets[track_name] // n_pairs_in_track
|
189 |
+
|
190 |
+
pair_targets[track_name] = min(target_per_pair, max_samples)
|
191 |
+
|
192 |
+
return pair_targets
|
193 |
+
|
194 |
+
|
195 |
+
def stratified_sample_pair_data(pair_data: pd.DataFrame, target_samples: int) -> pd.DataFrame:
|
196 |
+
"""Perform stratified sampling on pair data to ensure representativeness."""
|
197 |
+
|
198 |
+
# Try to stratify by domain if available
|
199 |
+
if "domain" in pair_data.columns and pair_data["domain"].nunique() > 1:
|
200 |
+
# Sample proportionally from each domain
|
201 |
+
domain_counts = pair_data["domain"].value_counts()
|
202 |
+
sampled_parts = []
|
203 |
+
|
204 |
+
for domain, count in domain_counts.items():
|
205 |
+
domain_data = pair_data[pair_data["domain"] == domain]
|
206 |
+
|
207 |
+
# Calculate proportional sample size
|
208 |
+
proportion = count / len(pair_data)
|
209 |
+
domain_target = max(1, int(target_samples * proportion))
|
210 |
+
domain_target = min(domain_target, len(domain_data))
|
211 |
+
|
212 |
+
if len(domain_data) >= domain_target:
|
213 |
+
domain_sample = domain_data.sample(n=domain_target, random_state=42)
|
214 |
+
sampled_parts.append(domain_sample)
|
215 |
+
|
216 |
+
if sampled_parts:
|
217 |
+
stratified_sample = pd.concat(sampled_parts, ignore_index=True)
|
218 |
+
|
219 |
+
# If we didn't get enough samples, fill with random sampling
|
220 |
+
if len(stratified_sample) < target_samples:
|
221 |
+
remaining_data = pair_data[~pair_data.index.isin(stratified_sample.index)]
|
222 |
+
additional_needed = target_samples - len(stratified_sample)
|
223 |
+
|
224 |
+
if len(remaining_data) >= additional_needed:
|
225 |
+
additional_sample = remaining_data.sample(n=additional_needed, random_state=42)
|
226 |
+
stratified_sample = pd.concat([stratified_sample, additional_sample], ignore_index=True)
|
227 |
+
|
228 |
+
return stratified_sample.head(target_samples)
|
229 |
+
|
230 |
+
# Fallback to simple random sampling
|
231 |
+
return pair_data.sample(n=min(target_samples, len(pair_data)), random_state=42)
|
232 |
+
|
233 |
+
|
234 |
+
def calculate_statistical_weight(
|
235 |
+
src_lang: str, tgt_lang: str, tracks_included: List[str]
|
236 |
+
) -> float:
|
237 |
+
"""Calculate statistical weight for a sample based on track inclusion."""
|
238 |
+
|
239 |
+
# Base weight
|
240 |
+
weight = 1.0
|
241 |
+
|
242 |
+
# Higher weight for samples in multiple tracks (more valuable)
|
243 |
+
weight *= len(tracks_included)
|
244 |
+
|
245 |
+
# Higher weight for Google-comparable pairs (enable baseline comparison)
|
246 |
+
if (src_lang in GOOGLE_SUPPORTED_LANGUAGES and
|
247 |
+
tgt_lang in GOOGLE_SUPPORTED_LANGUAGES):
|
248 |
+
weight *= 1.5
|
249 |
+
|
250 |
+
# Normalize to reasonable range
|
251 |
+
return min(weight, 5.0)
|
252 |
+
|
253 |
+
|
254 |
+
def validate_test_set_scientific_adequacy(test_df: pd.DataFrame) -> Dict:
|
255 |
+
"""Validate that the test set meets scientific adequacy requirements."""
|
256 |
+
|
257 |
+
adequacy_report = {
|
258 |
+
"overall_adequacy": "insufficient",
|
259 |
+
"track_adequacy": {},
|
260 |
+
"issues": [],
|
261 |
+
"recommendations": [],
|
262 |
+
"statistics": {},
|
263 |
+
}
|
264 |
+
|
265 |
+
if test_df.empty:
|
266 |
+
adequacy_report["issues"].append("Test set is empty")
|
267 |
+
return adequacy_report
|
268 |
+
|
269 |
+
# Check each track
|
270 |
+
track_adequacies = []
|
271 |
+
|
272 |
+
for track_name, track_config in EVALUATION_TRACKS.items():
|
273 |
+
track_languages = track_config["languages"]
|
274 |
+
min_per_pair = track_config["min_samples_per_pair"]
|
275 |
+
|
276 |
+
# Filter to track data
|
277 |
+
track_data = test_df[
|
278 |
+
(test_df["source_language"].isin(track_languages)) &
|
279 |
+
(test_df["target_language"].isin(track_languages))
|
280 |
+
]
|
281 |
+
|
282 |
+
# Analyze pair coverage
|
283 |
+
pair_counts = {}
|
284 |
+
for src in track_languages:
|
285 |
+
for tgt in track_languages:
|
286 |
+
if src == tgt:
|
287 |
+
continue
|
288 |
+
|
289 |
+
pair_samples = track_data[
|
290 |
+
(track_data["source_language"] == src) &
|
291 |
+
(track_data["target_language"] == tgt)
|
292 |
+
]
|
293 |
+
pair_counts[f"{src}_{tgt}"] = len(pair_samples)
|
294 |
+
|
295 |
+
# Calculate adequacy metrics
|
296 |
+
total_pairs = len(pair_counts)
|
297 |
+
adequate_pairs = sum(1 for count in pair_counts.values() if count >= min_per_pair)
|
298 |
+
adequacy_rate = adequate_pairs / max(total_pairs, 1)
|
299 |
+
|
300 |
+
# Determine track adequacy level
|
301 |
+
if adequacy_rate >= 0.9:
|
302 |
+
track_adequacy = "excellent"
|
303 |
+
elif adequacy_rate >= 0.8:
|
304 |
+
track_adequacy = "good"
|
305 |
+
elif adequacy_rate >= 0.6:
|
306 |
+
track_adequacy = "fair"
|
307 |
+
else:
|
308 |
+
track_adequacy = "insufficient"
|
309 |
+
|
310 |
+
adequacy_report["track_adequacy"][track_name] = {
|
311 |
+
"adequacy": track_adequacy,
|
312 |
+
"adequacy_rate": adequacy_rate,
|
313 |
+
"total_samples": len(track_data),
|
314 |
+
"total_pairs": total_pairs,
|
315 |
+
"adequate_pairs": adequate_pairs,
|
316 |
+
"min_samples_per_pair": min_per_pair,
|
317 |
+
"pair_counts": pair_counts,
|
318 |
+
}
|
319 |
+
|
320 |
+
track_adequacies.append(track_adequacy)
|
321 |
+
|
322 |
+
# Add specific issues
|
323 |
+
if track_adequacy == "insufficient":
|
324 |
+
inadequate_pairs = [k for k, v in pair_counts.items() if v < min_per_pair]
|
325 |
+
adequacy_report["issues"].append(
|
326 |
+
f"{track_name}: {len(inadequate_pairs)} pairs below minimum"
|
327 |
+
)
|
328 |
+
|
329 |
+
# Overall adequacy assessment
|
330 |
+
if all(adequacy in ["excellent", "good"] for adequacy in track_adequacies):
|
331 |
+
adequacy_report["overall_adequacy"] = "excellent"
|
332 |
+
elif all(adequacy in ["excellent", "good", "fair"] for adequacy in track_adequacies):
|
333 |
+
adequacy_report["overall_adequacy"] = "good"
|
334 |
+
elif any(adequacy in ["good", "fair"] for adequacy in track_adequacies):
|
335 |
+
adequacy_report["overall_adequacy"] = "fair"
|
336 |
+
else:
|
337 |
+
adequacy_report["overall_adequacy"] = "insufficient"
|
338 |
+
|
339 |
+
# Overall statistics
|
340 |
+
adequacy_report["statistics"] = {
|
341 |
+
"total_samples": len(test_df),
|
342 |
+
"total_language_pairs": len(test_df.groupby(["source_language", "target_language"])),
|
343 |
+
"google_comparable_samples": int(test_df["google_comparable"].sum()),
|
344 |
+
"domain_distribution": test_df["domain"].value_counts().to_dict(),
|
345 |
+
"track_sample_distribution": {
|
346 |
+
track: adequacy_report["track_adequacy"][track]["total_samples"]
|
347 |
+
for track in EVALUATION_TRACKS.keys()
|
348 |
+
},
|
349 |
+
}
|
350 |
+
|
351 |
+
# Generate recommendations
|
352 |
+
if adequacy_report["overall_adequacy"] in ["insufficient", "fair"]:
|
353 |
+
adequacy_report["recommendations"].append(
|
354 |
+
"Consider increasing sample size for better statistical power"
|
355 |
+
)
|
356 |
+
|
357 |
+
if adequacy_report["statistics"]["google_comparable_samples"] < 1000:
|
358 |
+
adequacy_report["recommendations"].append(
|
359 |
+
"More Google-comparable samples recommended for baseline comparison"
|
360 |
+
)
|
361 |
+
|
362 |
+
return adequacy_report
|
363 |
+
|
364 |
+
|
365 |
+
def _generate_and_save_scientific_test_set() -> Tuple[pd.DataFrame, pd.DataFrame]:
|
366 |
+
"""Generate and save both public and complete versions of the scientific test set."""
|
367 |
+
|
368 |
+
print("🔬 Generating and saving scientific test sets...")
|
369 |
+
|
370 |
+
full_df = generate_scientific_test_set()
|
371 |
|
372 |
if full_df.empty:
|
373 |
+
print("❌ Failed to generate scientific test set")
|
|
|
374 |
empty_public = pd.DataFrame(columns=[
|
375 |
+
"sample_id", "source_text", "source_language",
|
376 |
+
"target_language", "domain", "google_comparable",
|
377 |
+
"tracks_included", "statistical_weight"
|
378 |
])
|
379 |
empty_complete = pd.DataFrame(columns=[
|
380 |
+
"sample_id", "source_text", "target_text", "source_language",
|
381 |
+
"target_language", "domain", "google_comparable",
|
382 |
+
"tracks_included", "statistical_weight"
|
383 |
])
|
384 |
return empty_public, empty_complete
|
385 |
|
386 |
# Public version (no target_text)
|
387 |
public_df = full_df[[
|
388 |
+
"sample_id", "source_text", "source_language",
|
389 |
+
"target_language", "domain", "google_comparable",
|
390 |
+
"tracks_included", "statistical_weight"
|
391 |
]].copy()
|
392 |
|
393 |
+
# Save main versions
|
394 |
try:
|
395 |
public_df.to_csv(LOCAL_PUBLIC_CSV, index=False)
|
396 |
full_df.to_csv(LOCAL_COMPLETE_CSV, index=False)
|
397 |
+
print(f"✅ Saved main test sets: {LOCAL_PUBLIC_CSV}, {LOCAL_COMPLETE_CSV}")
|
398 |
except Exception as e:
|
399 |
+
print(f"⚠️ Error saving main CSVs: {e}")
|
400 |
+
|
401 |
+
# Save track-specific versions for easier analysis
|
402 |
+
for track_name, track_config in EVALUATION_TRACKS.items():
|
403 |
+
try:
|
404 |
+
track_languages = track_config["languages"]
|
405 |
+
track_public = public_df[
|
406 |
+
(public_df["source_language"].isin(track_languages)) &
|
407 |
+
(public_df["target_language"].isin(track_languages))
|
408 |
+
]
|
409 |
+
|
410 |
+
track_filename = LOCAL_TRACK_CSVS[track_name]
|
411 |
+
track_public.to_csv(track_filename, index=False)
|
412 |
+
print(f"✅ Saved {track_name} track: {track_filename} ({len(track_public):,} samples)")
|
413 |
+
|
414 |
+
except Exception as e:
|
415 |
+
print(f"⚠️ Error saving {track_name} track CSV: {e}")
|
416 |
|
417 |
return public_df, full_df
|
418 |
|
419 |
+
|
420 |
+
def get_public_test_set_scientific() -> pd.DataFrame:
|
421 |
+
"""Load the scientific public test set with enhanced fallback logic."""
|
422 |
+
|
|
|
423 |
# 1) Try HF Hub
|
424 |
try:
|
425 |
+
print("📥 Attempting to load scientific test set from HF Hub...")
|
426 |
+
ds = load_dataset(TEST_SET_DATASET + "-scientific", split="train", token=HF_TOKEN)
|
427 |
df = ds.to_pandas()
|
428 |
+
|
429 |
+
# Validate scientific structure
|
430 |
+
required_cols = ["sample_id", "source_text", "source_language", "target_language",
|
431 |
+
"tracks_included", "statistical_weight"]
|
432 |
+
if all(col in df.columns for col in required_cols):
|
433 |
+
print(f"✅ Loaded scientific test set from HF Hub ({len(df):,} samples)")
|
434 |
+
return df
|
435 |
+
else:
|
436 |
+
print("⚠️ HF Hub test set missing scientific columns, regenerating...")
|
437 |
+
|
438 |
except Exception as e:
|
439 |
print(f"⚠️ HF Hub load failed: {e}")
|
440 |
|
|
|
442 |
if os.path.exists(LOCAL_PUBLIC_CSV):
|
443 |
try:
|
444 |
df = pd.read_csv(LOCAL_PUBLIC_CSV)
|
445 |
+
required_cols = ["sample_id", "source_text", "source_language", "target_language"]
|
|
|
|
|
446 |
if all(col in df.columns for col in required_cols):
|
447 |
+
print(f"✅ Loaded scientific test set from local CSV ({len(df):,} samples)")
|
448 |
return df
|
449 |
else:
|
450 |
print("⚠️ Local CSV has invalid structure, regenerating...")
|
451 |
except Exception as e:
|
452 |
+
print(f"⚠️ Failed to read local scientific CSV: {e}")
|
453 |
|
454 |
# 3) Regenerate & save
|
455 |
+
print("🔄 Generating new scientific test set...")
|
456 |
+
public_df, _ = _generate_and_save_scientific_test_set()
|
457 |
return public_df
|
458 |
|
459 |
+
|
460 |
+
def get_complete_test_set_scientific() -> pd.DataFrame:
|
461 |
+
"""Load the complete scientific test set with targets."""
|
462 |
+
|
|
|
463 |
# 1) Try HF Hub private
|
464 |
try:
|
465 |
+
print("📥 Attempting to load complete scientific test set from HF Hub...")
|
466 |
+
ds = load_dataset(TEST_SET_DATASET + "-scientific-private", split="train", token=HF_TOKEN)
|
467 |
df = ds.to_pandas()
|
468 |
+
|
469 |
+
required_cols = ["sample_id", "source_text", "target_text", "source_language",
|
470 |
+
"target_language", "tracks_included", "statistical_weight"]
|
471 |
+
if all(col in df.columns for col in required_cols):
|
472 |
+
print(f"✅ Loaded complete scientific test set from HF Hub ({len(df):,} samples)")
|
473 |
+
return df
|
474 |
+
else:
|
475 |
+
print("⚠️ HF Hub complete test set missing scientific columns, regenerating...")
|
476 |
+
|
477 |
except Exception as e:
|
478 |
+
print(f"⚠️ HF Hub private load failed: {e}")
|
479 |
|
480 |
# 2) Try local CSV
|
481 |
if os.path.exists(LOCAL_COMPLETE_CSV):
|
482 |
try:
|
483 |
df = pd.read_csv(LOCAL_COMPLETE_CSV)
|
484 |
+
required_cols = ["sample_id", "source_text", "target_text", "source_language", "target_language"]
|
|
|
|
|
485 |
if all(col in df.columns for col in required_cols):
|
486 |
+
print(f"✅ Loaded complete scientific test set from local CSV ({len(df):,} samples)")
|
487 |
return df
|
488 |
else:
|
489 |
+
print("⚠️ Local complete CSV has invalid structure, regenerating...")
|
490 |
except Exception as e:
|
491 |
+
print(f"⚠️ Failed to read local complete scientific CSV: {e}")
|
492 |
|
493 |
# 3) Regenerate & save
|
494 |
+
print("🔄 Generating new complete scientific test set...")
|
495 |
+
_, complete_df = _generate_and_save_scientific_test_set()
|
496 |
return complete_df
|
497 |
|
498 |
+
|
499 |
+
def get_track_test_set(track: str) -> pd.DataFrame:
|
500 |
+
"""Get test set filtered for a specific track."""
|
501 |
+
|
502 |
+
if track not in EVALUATION_TRACKS:
|
503 |
+
print(f"❌ Unknown track: {track}")
|
504 |
+
return pd.DataFrame()
|
505 |
+
|
506 |
+
# Try track-specific CSV first
|
507 |
+
track_csv = LOCAL_TRACK_CSVS.get(track)
|
508 |
+
if track_csv and os.path.exists(track_csv):
|
509 |
+
try:
|
510 |
+
df = pd.read_csv(track_csv)
|
511 |
+
print(f"✅ Loaded {track} test set from track-specific CSV ({len(df):,} samples)")
|
512 |
+
return df
|
513 |
+
except Exception as e:
|
514 |
+
print(f"⚠️ Failed to read {track} CSV: {e}")
|
515 |
+
|
516 |
+
# Fallback to filtering main test set
|
517 |
+
public_df = get_public_test_set_scientific()
|
518 |
+
|
519 |
+
if public_df.empty:
|
520 |
+
return pd.DataFrame()
|
521 |
+
|
522 |
+
track_languages = EVALUATION_TRACKS[track]["languages"]
|
523 |
+
track_df = public_df[
|
524 |
+
(public_df["source_language"].isin(track_languages)) &
|
525 |
+
(public_df["target_language"].isin(track_languages))
|
526 |
+
]
|
527 |
+
|
528 |
+
print(f"✅ Filtered {track} test set from main set ({len(track_df):,} samples)")
|
529 |
+
return track_df
|
530 |
+
|
531 |
+
|
532 |
+
def create_test_set_download_scientific() -> Tuple[str, Dict]:
|
533 |
+
"""Create scientific test set download with comprehensive metadata."""
|
534 |
+
|
535 |
+
public_df = get_public_test_set_scientific()
|
536 |
|
537 |
if public_df.empty:
|
|
|
538 |
stats = {
|
539 |
+
"total_samples": 0,
|
540 |
+
"track_breakdown": {},
|
541 |
+
"adequacy_assessment": "insufficient",
|
542 |
+
"scientific_metadata": {},
|
|
|
543 |
}
|
544 |
return LOCAL_PUBLIC_CSV, stats
|
545 |
|
546 |
download_path = LOCAL_PUBLIC_CSV
|
547 |
+
|
548 |
# Ensure the CSV is up-to-date
|
549 |
try:
|
550 |
public_df.to_csv(download_path, index=False)
|
551 |
except Exception as e:
|
552 |
+
print(f"⚠️ Error updating scientific CSV: {e}")
|
553 |
|
554 |
+
# Calculate comprehensive statistics
|
555 |
try:
|
556 |
+
# Basic statistics
|
557 |
stats = {
|
558 |
+
"total_samples": len(public_df),
|
559 |
+
"languages": sorted(list(set(public_df["source_language"]).union(public_df["target_language"]))),
|
560 |
+
"domains": public_df["domain"].unique().tolist() if "domain" in public_df.columns else ["general"],
|
561 |
+
}
|
562 |
+
|
563 |
+
# Track-specific breakdown
|
564 |
+
track_breakdown = {}
|
565 |
+
for track_name, track_config in EVALUATION_TRACKS.items():
|
566 |
+
track_languages = track_config["languages"]
|
567 |
+
track_data = public_df[
|
568 |
+
(public_df["source_language"].isin(track_languages)) &
|
569 |
+
(public_df["target_language"].isin(track_languages))
|
570 |
+
]
|
571 |
+
|
572 |
+
track_breakdown[track_name] = {
|
573 |
+
"name": track_config["name"],
|
574 |
+
"total_samples": len(track_data),
|
575 |
+
"language_pairs": len(track_data.groupby(["source_language", "target_language"])),
|
576 |
+
"min_samples_per_pair": track_config["min_samples_per_pair"],
|
577 |
+
"statistical_adequacy": len(track_data) >= track_config["min_samples_per_pair"] * len(track_languages) * (len(track_languages) - 1),
|
578 |
+
}
|
579 |
+
|
580 |
+
stats["track_breakdown"] = track_breakdown
|
581 |
+
|
582 |
+
# Google-comparable statistics
|
583 |
+
if "google_comparable" in public_df.columns:
|
584 |
+
stats["google_comparable_samples"] = int(public_df["google_comparable"].sum())
|
585 |
+
stats["google_comparable_rate"] = float(public_df["google_comparable"].mean())
|
586 |
+
else:
|
587 |
+
stats["google_comparable_samples"] = 0
|
588 |
+
stats["google_comparable_rate"] = 0.0
|
589 |
+
|
590 |
+
# Scientific adequacy assessment
|
591 |
+
adequacy_report = validate_test_set_scientific_adequacy(public_df)
|
592 |
+
stats["adequacy_assessment"] = adequacy_report["overall_adequacy"]
|
593 |
+
stats["adequacy_details"] = adequacy_report
|
594 |
+
|
595 |
+
# Scientific metadata
|
596 |
+
stats["scientific_metadata"] = {
|
597 |
+
"stratified_sampling": True,
|
598 |
+
"statistical_weighting": "statistical_weight" in public_df.columns,
|
599 |
+
"track_balanced": True,
|
600 |
+
"confidence_level": STATISTICAL_CONFIG["confidence_level"],
|
601 |
+
"recommended_for": [
|
602 |
+
track for track, info in track_breakdown.items()
|
603 |
+
if info["statistical_adequacy"]
|
604 |
+
],
|
605 |
}
|
606 |
+
|
607 |
except Exception as e:
|
608 |
+
print(f"⚠️ Error calculating scientific stats: {e}")
|
609 |
stats = {
|
610 |
+
"total_samples": len(public_df),
|
611 |
+
"track_breakdown": {},
|
612 |
+
"adequacy_assessment": "unknown",
|
613 |
+
"scientific_metadata": {},
|
|
|
614 |
}
|
615 |
|
616 |
return download_path, stats
|
617 |
|
618 |
+
|
619 |
+
def validate_test_set_integrity_scientific() -> Dict:
|
620 |
+
"""Comprehensive validation of scientific test set integrity."""
|
621 |
+
|
622 |
try:
|
623 |
+
public_df = get_public_test_set_scientific()
|
624 |
+
complete_df = get_complete_test_set_scientific()
|
625 |
|
626 |
if public_df.empty or complete_df.empty:
|
627 |
return {
|
628 |
+
"alignment_check": False,
|
629 |
+
"total_samples": 0,
|
630 |
+
"scientific_adequacy": {},
|
631 |
+
"track_analysis": {},
|
632 |
+
"error": "Test sets are empty or could not be loaded",
|
633 |
}
|
634 |
|
635 |
+
public_ids = set(public_df["sample_id"])
|
636 |
+
private_ids = set(complete_df["sample_id"])
|
637 |
|
638 |
+
# Track-specific analysis
|
639 |
+
track_analysis = {}
|
640 |
+
for track_name, track_config in EVALUATION_TRACKS.items():
|
641 |
+
track_languages = track_config["languages"]
|
642 |
+
min_per_pair = track_config["min_samples_per_pair"]
|
643 |
+
|
644 |
+
# Analyze public set for this track
|
645 |
+
track_public = public_df[
|
646 |
+
(public_df["source_language"].isin(track_languages)) &
|
647 |
+
(public_df["target_language"].isin(track_languages))
|
648 |
+
]
|
649 |
+
|
650 |
+
# Analyze complete set for this track
|
651 |
+
track_complete = complete_df[
|
652 |
+
(complete_df["source_language"].isin(track_languages)) &
|
653 |
+
(complete_df["target_language"].isin(track_languages))
|
654 |
+
]
|
655 |
+
|
656 |
+
# Calculate coverage
|
657 |
+
pair_coverage = {}
|
658 |
+
for src in track_languages:
|
659 |
+
for tgt in track_languages:
|
660 |
+
if src == tgt:
|
661 |
+
continue
|
662 |
+
|
663 |
+
public_subset = track_public[
|
664 |
+
(track_public["source_language"] == src) &
|
665 |
+
(track_public["target_language"] == tgt)
|
666 |
+
]
|
667 |
+
|
668 |
+
complete_subset = track_complete[
|
669 |
+
(track_complete["source_language"] == src) &
|
670 |
+
(track_complete["target_language"] == tgt)
|
671 |
+
]
|
672 |
+
|
673 |
+
pair_coverage[f"{src}_{tgt}"] = {
|
674 |
+
"public_count": len(public_subset),
|
675 |
+
"complete_count": len(complete_subset),
|
676 |
+
"alignment": len(public_subset) == len(complete_subset),
|
677 |
+
"meets_minimum": len(public_subset) >= min_per_pair,
|
678 |
+
}
|
679 |
+
|
680 |
+
# Track summary
|
681 |
+
total_pairs = len(pair_coverage)
|
682 |
+
adequate_pairs = sum(1 for info in pair_coverage.values() if info["meets_minimum"])
|
683 |
+
aligned_pairs = sum(1 for info in pair_coverage.values() if info["alignment"])
|
684 |
+
|
685 |
+
track_analysis[track_name] = {
|
686 |
+
"total_pairs": total_pairs,
|
687 |
+
"adequate_pairs": adequate_pairs,
|
688 |
+
"aligned_pairs": aligned_pairs,
|
689 |
+
"adequacy_rate": adequate_pairs / max(total_pairs, 1),
|
690 |
+
"alignment_rate": aligned_pairs / max(total_pairs, 1),
|
691 |
+
"pair_coverage": pair_coverage,
|
692 |
+
"statistical_power": calculate_track_statistical_power(track_public, track_config),
|
693 |
+
}
|
694 |
+
|
695 |
+
# Overall scientific adequacy
|
696 |
+
adequacy_report = validate_test_set_scientific_adequacy(public_df)
|
697 |
|
698 |
return {
|
699 |
+
"alignment_check": public_ids <= private_ids,
|
700 |
+
"total_samples": len(public_df),
|
701 |
+
"track_analysis": track_analysis,
|
702 |
+
"scientific_adequacy": adequacy_report,
|
703 |
+
"public_samples": len(public_df),
|
704 |
+
"private_samples": len(complete_df),
|
705 |
+
"id_alignment_rate": len(public_ids & private_ids) / len(public_ids) if public_ids else 0.0,
|
706 |
+
"integrity_score": calculate_integrity_score(track_analysis, adequacy_report),
|
707 |
}
|
708 |
|
709 |
except Exception as e:
|
710 |
return {
|
711 |
+
"alignment_check": False,
|
712 |
+
"total_samples": 0,
|
713 |
+
"scientific_adequacy": {},
|
714 |
+
"track_analysis": {},
|
715 |
+
"error": f"Validation failed: {str(e)}",
|
716 |
+
}
|
717 |
+
|
718 |
+
|
719 |
+
def calculate_track_statistical_power(track_data: pd.DataFrame, track_config: Dict) -> float:
|
720 |
+
"""Calculate statistical power estimate for a track."""
|
721 |
+
|
722 |
+
if track_data.empty:
|
723 |
+
return 0.0
|
724 |
+
|
725 |
+
# Simple power estimation based on sample size
|
726 |
+
min_required = track_config["min_samples_per_pair"]
|
727 |
+
languages = track_config["languages"]
|
728 |
+
total_pairs = len(languages) * (len(languages) - 1)
|
729 |
+
|
730 |
+
# Calculate average samples per pair
|
731 |
+
pair_counts = []
|
732 |
+
for src in languages:
|
733 |
+
for tgt in languages:
|
734 |
+
if src == tgt:
|
735 |
+
continue
|
736 |
+
|
737 |
+
pair_samples = track_data[
|
738 |
+
(track_data["source_language"] == src) &
|
739 |
+
(track_data["target_language"] == tgt)
|
740 |
+
]
|
741 |
+
pair_counts.append(len(pair_samples))
|
742 |
+
|
743 |
+
if not pair_counts:
|
744 |
+
return 0.0
|
745 |
+
|
746 |
+
avg_samples_per_pair = np.mean(pair_counts)
|
747 |
+
|
748 |
+
# Rough power estimation (0.8 power at 2x minimum, 0.95 at 4x minimum)
|
749 |
+
if avg_samples_per_pair >= min_required * 4:
|
750 |
+
return 0.95
|
751 |
+
elif avg_samples_per_pair >= min_required * 2:
|
752 |
+
return 0.8
|
753 |
+
elif avg_samples_per_pair >= min_required:
|
754 |
+
return 0.6
|
755 |
+
else:
|
756 |
+
return max(0.0, avg_samples_per_pair / min_required * 0.6)
|
757 |
+
|
758 |
+
|
759 |
+
def calculate_integrity_score(track_analysis: Dict, adequacy_report: Dict) -> float:
|
760 |
+
"""Calculate overall integrity score for the test set."""
|
761 |
+
|
762 |
+
if not track_analysis or not adequacy_report:
|
763 |
+
return 0.0
|
764 |
+
|
765 |
+
# Track adequacy scores
|
766 |
+
track_scores = []
|
767 |
+
for track_info in track_analysis.values():
|
768 |
+
adequacy_rate = track_info.get("adequacy_rate", 0.0)
|
769 |
+
alignment_rate = track_info.get("alignment_rate", 0.0)
|
770 |
+
track_score = (adequacy_rate + alignment_rate) / 2
|
771 |
+
track_scores.append(track_score)
|
772 |
+
|
773 |
+
# Overall adequacy mapping
|
774 |
+
adequacy_mapping = {
|
775 |
+
"excellent": 1.0,
|
776 |
+
"good": 0.8,
|
777 |
+
"fair": 0.6,
|
778 |
+
"insufficient": 0.2,
|
779 |
+
}
|
780 |
+
|
781 |
+
overall_adequacy_score = adequacy_mapping.get(
|
782 |
+
adequacy_report.get("overall_adequacy", "insufficient"), 0.2
|
783 |
+
)
|
784 |
+
|
785 |
+
# Combined score
|
786 |
+
if track_scores:
|
787 |
+
track_avg = np.mean(track_scores)
|
788 |
+
integrity_score = (track_avg + overall_adequacy_score) / 2
|
789 |
+
else:
|
790 |
+
integrity_score = overall_adequacy_score
|
791 |
+
|
792 |
+
return float(integrity_score)
|