Spaces:
Sleeping
Sleeping
Update src/validation.py
Browse files- src/validation.py +160 -221
src/validation.py
CHANGED
@@ -16,74 +16,49 @@ from config import (
|
|
16 |
|
17 |
def detect_model_category(model_name: str, author: str, description: str) -> str:
|
18 |
"""Automatically detect model category based on name and metadata."""
|
19 |
-
|
20 |
# Combine all text for analysis
|
21 |
text_to_analyze = f"{model_name} {author} {description}".lower()
|
22 |
-
|
23 |
# Category detection patterns
|
24 |
detection_patterns = PREDICTION_FORMAT["category_detection"]
|
25 |
-
|
26 |
# Check for specific patterns
|
27 |
-
if any(
|
28 |
-
pattern in text_to_analyze for pattern in detection_patterns.get("google", [])
|
29 |
-
):
|
30 |
return "commercial"
|
31 |
-
|
32 |
-
if any(
|
33 |
-
pattern in text_to_analyze for pattern in detection_patterns.get("nllb", [])
|
34 |
-
):
|
35 |
return "research"
|
36 |
-
|
37 |
if any(pattern in text_to_analyze for pattern in detection_patterns.get("m2m", [])):
|
38 |
return "research"
|
39 |
-
|
40 |
-
if any(
|
41 |
-
pattern in text_to_analyze for pattern in detection_patterns.get("baseline", [])
|
42 |
-
):
|
43 |
return "baseline"
|
44 |
-
|
45 |
# Check for research indicators
|
46 |
research_indicators = [
|
47 |
-
"university",
|
48 |
-
"
|
49 |
-
"paper",
|
50 |
-
"arxiv",
|
51 |
-
"acl",
|
52 |
-
"emnlp",
|
53 |
-
"naacl",
|
54 |
-
"transformer",
|
55 |
-
"bert",
|
56 |
-
"gpt",
|
57 |
-
"t5",
|
58 |
-
"mbart",
|
59 |
-
"academic",
|
60 |
]
|
61 |
if any(indicator in text_to_analyze for indicator in research_indicators):
|
62 |
return "research"
|
63 |
-
|
64 |
# Check for commercial indicators
|
65 |
commercial_indicators = [
|
66 |
-
"google",
|
67 |
-
"
|
68 |
-
"azure",
|
69 |
-
"aws",
|
70 |
-
"openai",
|
71 |
-
"anthropic",
|
72 |
-
"commercial",
|
73 |
-
"api",
|
74 |
-
"cloud",
|
75 |
-
"translate",
|
76 |
]
|
77 |
if any(indicator in text_to_analyze for indicator in commercial_indicators):
|
78 |
return "commercial"
|
79 |
-
|
80 |
# Default to community
|
81 |
return "community"
|
82 |
|
83 |
|
84 |
def validate_file_format_enhanced(file_content: bytes, filename: str) -> Dict:
|
85 |
"""Enhanced file format validation with stricter requirements."""
|
86 |
-
|
87 |
try:
|
88 |
# Determine file type
|
89 |
if filename.endswith(".csv"):
|
@@ -98,7 +73,7 @@ def validate_file_format_enhanced(file_content: bytes, filename: str) -> Dict:
|
|
98 |
"valid": False,
|
99 |
"error": f"Unsupported file type. Use: {', '.join(PREDICTION_FORMAT['file_types'])}",
|
100 |
}
|
101 |
-
|
102 |
# Check required columns
|
103 |
missing_cols = set(PREDICTION_FORMAT["required_columns"]) - set(df.columns)
|
104 |
if missing_cols:
|
@@ -106,46 +81,38 @@ def validate_file_format_enhanced(file_content: bytes, filename: str) -> Dict:
|
|
106 |
"valid": False,
|
107 |
"error": f"Missing required columns: {', '.join(missing_cols)}",
|
108 |
}
|
109 |
-
|
110 |
# Basic data validation
|
111 |
if len(df) == 0:
|
112 |
return {"valid": False, "error": "File is empty"}
|
113 |
-
|
114 |
# Enhanced validation checks
|
115 |
validation_issues = []
|
116 |
-
|
117 |
# Check for required data
|
118 |
if df["sample_id"].isna().any():
|
119 |
validation_issues.append("Missing sample_id values found")
|
120 |
-
|
121 |
if df["prediction"].isna().any():
|
122 |
na_count = df["prediction"].isna().sum()
|
123 |
-
validation_issues.append(
|
124 |
-
|
125 |
-
)
|
126 |
-
|
127 |
# Check for duplicates
|
128 |
duplicates = df["sample_id"].duplicated()
|
129 |
if duplicates.any():
|
130 |
dup_count = duplicates.sum()
|
131 |
-
validation_issues.append(
|
132 |
-
|
133 |
-
)
|
134 |
-
|
135 |
# Data type validation
|
136 |
-
if not df["sample_id"].dtype == "object" and not df[
|
137 |
-
"sample_id"
|
138 |
-
].dtype.name.startswith("str"):
|
139 |
df["sample_id"] = df["sample_id"].astype(str)
|
140 |
-
|
141 |
# Check sample_id format
|
142 |
invalid_ids = ~df["sample_id"].str.match(r"salt_\d{6}", na=False)
|
143 |
if invalid_ids.any():
|
144 |
invalid_count = invalid_ids.sum()
|
145 |
-
validation_issues.append(
|
146 |
-
|
147 |
-
)
|
148 |
-
|
149 |
# Return results
|
150 |
if validation_issues:
|
151 |
return {
|
@@ -155,55 +122,53 @@ def validate_file_format_enhanced(file_content: bytes, filename: str) -> Dict:
|
|
155 |
"row_count": len(df),
|
156 |
"columns": list(df.columns),
|
157 |
}
|
158 |
-
|
159 |
return {
|
160 |
"valid": True,
|
161 |
"dataframe": df,
|
162 |
"row_count": len(df),
|
163 |
"columns": list(df.columns),
|
164 |
}
|
165 |
-
|
166 |
except Exception as e:
|
167 |
return {"valid": False, "error": f"Error parsing file: {str(e)}"}
|
168 |
|
169 |
|
170 |
def validate_predictions_content_enhanced(predictions: pd.DataFrame) -> Dict:
|
171 |
"""Enhanced prediction content validation with stricter quality checks."""
|
172 |
-
|
173 |
issues = []
|
174 |
warnings = []
|
175 |
quality_metrics = {}
|
176 |
-
|
177 |
# Basic content checks
|
178 |
empty_predictions = predictions["prediction"].str.strip().eq("").sum()
|
179 |
if empty_predictions > 0:
|
180 |
issues.append(f"{empty_predictions} empty predictions found")
|
181 |
-
|
182 |
# Length analysis
|
183 |
pred_lengths = predictions["prediction"].str.len()
|
184 |
quality_metrics["avg_length"] = float(pred_lengths.mean())
|
185 |
quality_metrics["std_length"] = float(pred_lengths.std())
|
186 |
-
|
187 |
# Check for suspiciously short predictions
|
188 |
short_predictions = (pred_lengths < 3).sum()
|
189 |
if short_predictions > len(predictions) * 0.05: # More than 5%
|
190 |
issues.append(f"{short_predictions} very short predictions (< 3 characters)")
|
191 |
-
|
192 |
# Check for suspiciously long predictions
|
193 |
long_predictions = (pred_lengths > 500).sum()
|
194 |
if long_predictions > len(predictions) * 0.01: # More than 1%
|
195 |
warnings.append(f"{long_predictions} very long predictions (> 500 characters)")
|
196 |
-
|
197 |
# Check for repeated predictions (more stringent)
|
198 |
duplicate_predictions = predictions["prediction"].duplicated().sum()
|
199 |
duplicate_rate = duplicate_predictions / len(predictions)
|
200 |
quality_metrics["duplicate_rate"] = float(duplicate_rate)
|
201 |
-
|
202 |
if duplicate_rate > VALIDATION_CONFIG["quality_thresholds"]["max_duplicate_rate"]:
|
203 |
-
issues.append(
|
204 |
-
|
205 |
-
)
|
206 |
-
|
207 |
# Check for placeholder text
|
208 |
placeholder_patterns = [
|
209 |
r"^(test|placeholder|todo|xxx|aaa|bbb)$",
|
@@ -211,53 +176,37 @@ def validate_predictions_content_enhanced(predictions: pd.DataFrame) -> Dict:
|
|
211 |
r"^\d+$", # Just numbers
|
212 |
r"^[^\w\s]*$", # Only punctuation
|
213 |
]
|
214 |
-
|
215 |
placeholder_count = 0
|
216 |
for pattern in placeholder_patterns:
|
217 |
-
placeholder_matches = (
|
218 |
-
predictions["prediction"]
|
219 |
-
.str.match(pattern, flags=re.IGNORECASE, na=False)
|
220 |
-
.sum()
|
221 |
-
)
|
222 |
placeholder_count += placeholder_matches
|
223 |
-
|
224 |
if placeholder_count > len(predictions) * 0.02: # More than 2%
|
225 |
issues.append(f"{placeholder_count} placeholder-like predictions detected")
|
226 |
-
|
227 |
# Language detection (basic)
|
228 |
-
non_ascii_rate = (
|
229 |
-
predictions["prediction"].str.contains(r"[^\x00-\x7f]", na=False).mean()
|
230 |
-
)
|
231 |
quality_metrics["non_ascii_rate"] = float(non_ascii_rate)
|
232 |
-
|
233 |
# Check for appropriate character distribution for African languages
|
234 |
if non_ascii_rate < 0.1: # Less than 10% non-ASCII might indicate English-only
|
235 |
-
warnings.append(
|
236 |
-
|
237 |
-
)
|
238 |
-
|
239 |
# Calculate overall quality score
|
240 |
quality_score = 1.0
|
241 |
quality_score -= len(issues) * 0.3 # Major penalty for issues
|
242 |
quality_score -= len(warnings) * 0.1 # Minor penalty for warnings
|
243 |
-
quality_score -= (
|
244 |
-
|
245 |
-
) # Penalty for excessive duplicates
|
246 |
-
|
247 |
# Length appropriateness
|
248 |
-
if
|
249 |
-
quality_metrics["avg_length"]
|
250 |
-
< VALIDATION_CONFIG["quality_thresholds"]["min_avg_length"]
|
251 |
-
):
|
252 |
quality_score -= 0.2
|
253 |
-
elif
|
254 |
-
quality_metrics["avg_length"]
|
255 |
-
> VALIDATION_CONFIG["quality_thresholds"]["max_avg_length"]
|
256 |
-
):
|
257 |
quality_score -= 0.1
|
258 |
-
|
259 |
quality_score = max(0.0, min(1.0, quality_score))
|
260 |
-
|
261 |
return {
|
262 |
"has_issues": len(issues) > 0,
|
263 |
"issues": issues,
|
@@ -271,65 +220,64 @@ def validate_against_test_set_enhanced(
|
|
271 |
predictions: pd.DataFrame, test_set: pd.DataFrame
|
272 |
) -> Dict:
|
273 |
"""Enhanced validation against test set with track-specific analysis."""
|
274 |
-
|
275 |
# Convert IDs to string for comparison
|
276 |
pred_ids = set(predictions["sample_id"].astype(str))
|
277 |
test_ids = set(test_set["sample_id"].astype(str))
|
278 |
-
|
279 |
# Check overall coverage
|
280 |
missing_ids = test_ids - pred_ids
|
281 |
extra_ids = pred_ids - test_ids
|
282 |
matching_ids = pred_ids & test_ids
|
283 |
-
|
284 |
overall_coverage = len(matching_ids) / len(test_ids)
|
285 |
-
|
286 |
# Track-specific coverage analysis
|
287 |
track_coverage = {}
|
288 |
-
|
289 |
for track_name, track_config in EVALUATION_TRACKS.items():
|
290 |
track_languages = track_config["languages"]
|
291 |
-
|
292 |
# Filter test set to track languages
|
293 |
track_test_set = test_set[
|
294 |
-
(test_set["source_language"].isin(track_languages))
|
295 |
-
|
296 |
]
|
297 |
-
|
298 |
if len(track_test_set) == 0:
|
299 |
continue
|
300 |
-
|
301 |
track_test_ids = set(track_test_set["sample_id"].astype(str))
|
302 |
track_matching_ids = pred_ids & track_test_ids
|
303 |
-
|
304 |
track_coverage[track_name] = {
|
305 |
"total_samples": len(track_test_set),
|
306 |
"covered_samples": len(track_matching_ids),
|
307 |
"coverage_rate": len(track_matching_ids) / len(track_test_set),
|
308 |
-
"meets_minimum": len(track_matching_ids)
|
309 |
-
>= VALIDATION_CONFIG["min_samples_per_track"][track_name],
|
310 |
"min_required": VALIDATION_CONFIG["min_samples_per_track"][track_name],
|
311 |
}
|
312 |
-
|
313 |
# Language pair coverage analysis
|
314 |
pair_coverage = {}
|
315 |
for _, row in test_set.iterrows():
|
316 |
pair_key = f"{row['source_language']}_{row['target_language']}"
|
317 |
if pair_key not in pair_coverage:
|
318 |
pair_coverage[pair_key] = {"total": 0, "covered": 0}
|
319 |
-
|
320 |
pair_coverage[pair_key]["total"] += 1
|
321 |
if str(row["sample_id"]) in pred_ids:
|
322 |
pair_coverage[pair_key]["covered"] += 1
|
323 |
-
|
324 |
# Calculate pair-wise coverage rates
|
325 |
for pair_key in pair_coverage:
|
326 |
pair_info = pair_coverage[pair_key]
|
327 |
pair_info["coverage_rate"] = pair_info["covered"] / pair_info["total"]
|
328 |
-
|
329 |
# Missing rate validation
|
330 |
missing_rate = len(missing_ids) / len(test_ids)
|
331 |
meets_missing_threshold = missing_rate <= VALIDATION_CONFIG["max_missing_rate"]
|
332 |
-
|
333 |
return {
|
334 |
"overall_coverage": overall_coverage,
|
335 |
"missing_count": len(missing_ids),
|
@@ -345,36 +293,38 @@ def validate_against_test_set_enhanced(
|
|
345 |
}
|
346 |
|
347 |
|
348 |
-
def assess_statistical_adequacy(
|
|
|
|
|
349 |
"""Assess statistical adequacy for scientific evaluation."""
|
350 |
-
|
351 |
adequacy_assessment = {
|
352 |
"overall_adequate": True,
|
353 |
"track_adequacy": {},
|
354 |
"recommendations": [],
|
355 |
"statistical_power_estimate": {},
|
356 |
}
|
357 |
-
|
358 |
track_coverage = validation_result.get("track_coverage", {})
|
359 |
-
|
360 |
for track_name, coverage_info in track_coverage.items():
|
361 |
track_config = EVALUATION_TRACKS[track_name]
|
362 |
-
|
363 |
# Sample size adequacy
|
364 |
covered_samples = coverage_info["covered_samples"]
|
365 |
min_required = coverage_info["min_required"]
|
366 |
-
|
367 |
sample_adequate = covered_samples >= min_required
|
368 |
-
|
369 |
# Coverage rate adequacy
|
370 |
coverage_rate = coverage_info["coverage_rate"]
|
371 |
coverage_adequate = coverage_rate >= 0.8 # 80% coverage minimum
|
372 |
-
|
373 |
# Statistical power estimation (simplified)
|
374 |
estimated_power = min(1.0, covered_samples / (min_required * 1.5))
|
375 |
-
|
376 |
track_adequate = sample_adequate and coverage_adequate
|
377 |
-
|
378 |
adequacy_assessment["track_adequacy"][track_name] = {
|
379 |
"sample_adequate": sample_adequate,
|
380 |
"coverage_adequate": coverage_adequate,
|
@@ -384,31 +334,28 @@ def assess_statistical_adequacy(validation_result: Dict, model_category: str) ->
|
|
384 |
"coverage_rate": coverage_rate,
|
385 |
"estimated_power": estimated_power,
|
386 |
}
|
387 |
-
|
388 |
if not track_adequate:
|
389 |
adequacy_assessment["overall_adequate"] = False
|
390 |
-
|
391 |
adequacy_assessment["statistical_power_estimate"][track_name] = estimated_power
|
392 |
-
|
393 |
# Generate recommendations
|
394 |
if not adequacy_assessment["overall_adequate"]:
|
395 |
inadequate_tracks = [
|
396 |
-
track
|
397 |
-
for track, info in adequacy_assessment["track_adequacy"].items()
|
398 |
if not info["overall_adequate"]
|
399 |
]
|
400 |
adequacy_assessment["recommendations"].append(
|
401 |
f"Insufficient samples for tracks: {', '.join(inadequate_tracks)}"
|
402 |
)
|
403 |
-
|
404 |
# Category-specific recommendations
|
405 |
-
if model_category == "commercial" and not adequacy_assessment["track_adequacy"].get(
|
406 |
-
"google_comparable", {}
|
407 |
-
).get("overall_adequate", False):
|
408 |
adequacy_assessment["recommendations"].append(
|
409 |
"Commercial models should ensure adequate coverage of Google-comparable track"
|
410 |
)
|
411 |
-
|
412 |
return adequacy_assessment
|
413 |
|
414 |
|
@@ -421,21 +368,19 @@ def generate_scientific_validation_report(
|
|
421 |
detected_category: str = "community",
|
422 |
) -> str:
|
423 |
"""Generate comprehensive scientific validation report."""
|
424 |
-
|
425 |
report = []
|
426 |
-
|
427 |
# Header
|
428 |
report.append(f"# π¬ Scientific Validation Report: {model_name or 'Submission'}")
|
429 |
report.append("")
|
430 |
-
|
431 |
# Model categorization
|
432 |
-
category_info = MODEL_CATEGORIES.get(
|
433 |
-
detected_category, MODEL_CATEGORIES["community"]
|
434 |
-
)
|
435 |
report.append(f"**Detected Model Category**: {category_info['name']}")
|
436 |
report.append(f"**Category Description**: {category_info['description']}")
|
437 |
report.append("")
|
438 |
-
|
439 |
# File format validation
|
440 |
if format_result["valid"]:
|
441 |
report.append("β
**File Format**: Valid")
|
@@ -445,128 +390,117 @@ def generate_scientific_validation_report(
|
|
445 |
report.append("β **File Format**: Invalid")
|
446 |
report.append(f" - Error: {format_result['error']}")
|
447 |
return "\n".join(report)
|
448 |
-
|
449 |
# Content quality validation
|
450 |
quality_score = content_result.get("quality_score", 0.0)
|
451 |
-
|
452 |
if content_result["has_issues"]:
|
453 |
report.append("β **Content Quality**: Issues Found")
|
454 |
for issue in content_result["issues"]:
|
455 |
report.append(f" - β {issue}")
|
456 |
else:
|
457 |
report.append("β
**Content Quality**: Good")
|
458 |
-
|
459 |
if content_result["warnings"]:
|
460 |
for warning in content_result["warnings"]:
|
461 |
report.append(f" - β οΈ {warning}")
|
462 |
-
|
463 |
report.append(f" - **Quality Score**: {quality_score:.2f}/1.00")
|
464 |
report.append("")
|
465 |
-
|
466 |
# Test set coverage validation
|
467 |
overall_coverage = test_set_result["overall_coverage"]
|
468 |
meets_threshold = test_set_result["meets_missing_threshold"]
|
469 |
-
|
470 |
if overall_coverage == 1.0:
|
471 |
report.append("β
**Test Set Coverage**: Complete")
|
472 |
elif overall_coverage >= 0.95 and meets_threshold:
|
473 |
report.append("β
**Test Set Coverage**: Adequate")
|
474 |
else:
|
475 |
report.append("β **Test Set Coverage**: Insufficient")
|
476 |
-
|
477 |
-
report.append(
|
478 |
-
f" - Coverage: {overall_coverage:.1%} ({test_set_result['matching_count']:,} / {test_set_result['matching_count'] + test_set_result['missing_count']:,})"
|
479 |
-
)
|
480 |
report.append(f" - Missing Rate: {test_set_result['missing_rate']:.1%}")
|
481 |
report.append("")
|
482 |
-
|
483 |
# Track-specific coverage analysis
|
484 |
report.append("## π Track-Specific Analysis")
|
485 |
-
|
486 |
track_coverage = test_set_result.get("track_coverage", {})
|
487 |
for track_name, coverage_info in track_coverage.items():
|
488 |
track_config = EVALUATION_TRACKS[track_name]
|
489 |
-
|
490 |
status = "β
" if coverage_info["meets_minimum"] else "β"
|
491 |
report.append(f"### {status} {track_config['name']}")
|
492 |
-
|
493 |
-
report.append(
|
494 |
-
f" - **Samples**: {coverage_info['covered_samples']:,} / {coverage_info['total_samples']:,}"
|
495 |
-
)
|
496 |
report.append(f" - **Coverage**: {coverage_info['coverage_rate']:.1%}")
|
497 |
report.append(f" - **Minimum Required**: {coverage_info['min_required']:,}")
|
498 |
-
report.append(
|
499 |
-
f" - **Status**: {'Adequate' if coverage_info['meets_minimum'] else 'Insufficient'}"
|
500 |
-
)
|
501 |
report.append("")
|
502 |
-
|
503 |
# Statistical adequacy assessment
|
504 |
report.append("## π¬ Statistical Adequacy Assessment")
|
505 |
-
|
506 |
if adequacy_result["overall_adequate"]:
|
507 |
-
report.append(
|
508 |
-
"β
**Overall Assessment**: Statistically adequate for scientific evaluation"
|
509 |
-
)
|
510 |
else:
|
511 |
-
report.append(
|
512 |
-
|
513 |
-
)
|
514 |
-
|
515 |
# Track adequacy details
|
516 |
for track_name, track_adequacy in adequacy_result["track_adequacy"].items():
|
517 |
track_config = EVALUATION_TRACKS[track_name]
|
518 |
power = track_adequacy["estimated_power"]
|
519 |
-
|
520 |
status = "β
" if track_adequacy["overall_adequate"] else "β"
|
521 |
-
report.append(
|
522 |
-
|
523 |
-
)
|
524 |
-
|
525 |
# Recommendations
|
526 |
if adequacy_result["recommendations"]:
|
527 |
report.append("")
|
528 |
report.append("## π‘ Recommendations")
|
529 |
for rec in adequacy_result["recommendations"]:
|
530 |
report.append(f" - {rec}")
|
531 |
-
|
532 |
# Final verdict
|
533 |
report.append("")
|
534 |
all_checks_pass = (
|
535 |
-
format_result["valid"]
|
536 |
-
|
537 |
-
|
538 |
-
and
|
539 |
-
|
540 |
)
|
541 |
-
|
542 |
if all_checks_pass:
|
543 |
report.append("π **Final Verdict**: Ready for scientific evaluation!")
|
544 |
elif format_result["valid"] and overall_coverage >= 0.8:
|
545 |
report.append("β οΈ **Final Verdict**: Can be evaluated with limitations")
|
546 |
else:
|
547 |
report.append("β **Final Verdict**: Please address issues before submission")
|
548 |
-
|
549 |
return "\n".join(report)
|
550 |
|
551 |
|
552 |
def validate_submission_scientific(
|
553 |
-
file_content: bytes,
|
554 |
-
filename: str,
|
555 |
-
test_set: pd.DataFrame,
|
556 |
model_name: str = "",
|
557 |
author: str = "",
|
558 |
-
description: str = ""
|
559 |
) -> Dict:
|
560 |
"""Complete scientific validation pipeline for submissions."""
|
561 |
-
|
562 |
# Step 1: Detect model category
|
563 |
detected_category = detect_model_category(model_name, author, description)
|
564 |
-
|
565 |
# Step 2: Enhanced file format validation
|
566 |
format_result = validate_file_format_enhanced(file_content, filename)
|
567 |
if not format_result["valid"]:
|
568 |
return {
|
569 |
"valid": False,
|
|
|
570 |
"category": detected_category,
|
571 |
"report": generate_scientific_validation_report(
|
572 |
format_result, {}, {}, {}, model_name, detected_category
|
@@ -574,39 +508,43 @@ def validate_submission_scientific(
|
|
574 |
"predictions": None,
|
575 |
"adequacy": {},
|
576 |
}
|
577 |
-
|
578 |
predictions = format_result["dataframe"]
|
579 |
-
|
580 |
# Step 3: Enhanced content validation
|
581 |
content_result = validate_predictions_content_enhanced(predictions)
|
582 |
-
|
583 |
# Step 4: Enhanced test set validation
|
584 |
test_set_result = validate_against_test_set_enhanced(predictions, test_set)
|
585 |
-
|
586 |
# Step 5: Statistical adequacy assessment
|
587 |
adequacy_result = assess_statistical_adequacy(test_set_result, detected_category)
|
588 |
-
|
589 |
# Step 6: Generate comprehensive report
|
590 |
report = generate_scientific_validation_report(
|
591 |
-
format_result,
|
592 |
-
|
593 |
-
test_set_result,
|
594 |
-
adequacy_result,
|
595 |
-
model_name,
|
596 |
-
detected_category,
|
597 |
)
|
598 |
-
|
599 |
-
# Overall validity determination
|
600 |
-
|
601 |
-
format_result["valid"]
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
)
|
607 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
608 |
return {
|
609 |
-
"valid":
|
|
|
610 |
"category": detected_category,
|
611 |
"coverage": test_set_result["overall_coverage"],
|
612 |
"report": report,
|
@@ -619,5 +557,6 @@ def validate_submission_scientific(
|
|
619 |
"validation_version": "2.0-scientific",
|
620 |
"detected_category": detected_category,
|
621 |
"statistical_adequacy": adequacy_result["overall_adequate"],
|
|
|
622 |
},
|
623 |
-
}
|
|
|
16 |
|
17 |
def detect_model_category(model_name: str, author: str, description: str) -> str:
|
18 |
"""Automatically detect model category based on name and metadata."""
|
19 |
+
|
20 |
# Combine all text for analysis
|
21 |
text_to_analyze = f"{model_name} {author} {description}".lower()
|
22 |
+
|
23 |
# Category detection patterns
|
24 |
detection_patterns = PREDICTION_FORMAT["category_detection"]
|
25 |
+
|
26 |
# Check for specific patterns
|
27 |
+
if any(pattern in text_to_analyze for pattern in detection_patterns.get("google", [])):
|
|
|
|
|
28 |
return "commercial"
|
29 |
+
|
30 |
+
if any(pattern in text_to_analyze for pattern in detection_patterns.get("nllb", [])):
|
|
|
|
|
31 |
return "research"
|
32 |
+
|
33 |
if any(pattern in text_to_analyze for pattern in detection_patterns.get("m2m", [])):
|
34 |
return "research"
|
35 |
+
|
36 |
+
if any(pattern in text_to_analyze for pattern in detection_patterns.get("baseline", [])):
|
|
|
|
|
37 |
return "baseline"
|
38 |
+
|
39 |
# Check for research indicators
|
40 |
research_indicators = [
|
41 |
+
"university", "research", "paper", "arxiv", "acl", "emnlp", "naacl",
|
42 |
+
"transformer", "bert", "gpt", "t5", "mbart", "academic"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
]
|
44 |
if any(indicator in text_to_analyze for indicator in research_indicators):
|
45 |
return "research"
|
46 |
+
|
47 |
# Check for commercial indicators
|
48 |
commercial_indicators = [
|
49 |
+
"google", "microsoft", "azure", "aws", "openai", "anthropic",
|
50 |
+
"commercial", "api", "cloud", "translate"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
]
|
52 |
if any(indicator in text_to_analyze for indicator in commercial_indicators):
|
53 |
return "commercial"
|
54 |
+
|
55 |
# Default to community
|
56 |
return "community"
|
57 |
|
58 |
|
59 |
def validate_file_format_enhanced(file_content: bytes, filename: str) -> Dict:
|
60 |
"""Enhanced file format validation with stricter requirements."""
|
61 |
+
|
62 |
try:
|
63 |
# Determine file type
|
64 |
if filename.endswith(".csv"):
|
|
|
73 |
"valid": False,
|
74 |
"error": f"Unsupported file type. Use: {', '.join(PREDICTION_FORMAT['file_types'])}",
|
75 |
}
|
76 |
+
|
77 |
# Check required columns
|
78 |
missing_cols = set(PREDICTION_FORMAT["required_columns"]) - set(df.columns)
|
79 |
if missing_cols:
|
|
|
81 |
"valid": False,
|
82 |
"error": f"Missing required columns: {', '.join(missing_cols)}",
|
83 |
}
|
84 |
+
|
85 |
# Basic data validation
|
86 |
if len(df) == 0:
|
87 |
return {"valid": False, "error": "File is empty"}
|
88 |
+
|
89 |
# Enhanced validation checks
|
90 |
validation_issues = []
|
91 |
+
|
92 |
# Check for required data
|
93 |
if df["sample_id"].isna().any():
|
94 |
validation_issues.append("Missing sample_id values found")
|
95 |
+
|
96 |
if df["prediction"].isna().any():
|
97 |
na_count = df["prediction"].isna().sum()
|
98 |
+
validation_issues.append(f"Missing prediction values found ({na_count} empty predictions)")
|
99 |
+
|
|
|
|
|
100 |
# Check for duplicates
|
101 |
duplicates = df["sample_id"].duplicated()
|
102 |
if duplicates.any():
|
103 |
dup_count = duplicates.sum()
|
104 |
+
validation_issues.append(f"Duplicate sample_id values found ({dup_count} duplicates)")
|
105 |
+
|
|
|
|
|
106 |
# Data type validation
|
107 |
+
if not df["sample_id"].dtype == "object" and not df["sample_id"].dtype.name.startswith("str"):
|
|
|
|
|
108 |
df["sample_id"] = df["sample_id"].astype(str)
|
109 |
+
|
110 |
# Check sample_id format
|
111 |
invalid_ids = ~df["sample_id"].str.match(r"salt_\d{6}", na=False)
|
112 |
if invalid_ids.any():
|
113 |
invalid_count = invalid_ids.sum()
|
114 |
+
validation_issues.append(f"Invalid sample_id format found ({invalid_count} invalid IDs)")
|
115 |
+
|
|
|
|
|
116 |
# Return results
|
117 |
if validation_issues:
|
118 |
return {
|
|
|
122 |
"row_count": len(df),
|
123 |
"columns": list(df.columns),
|
124 |
}
|
125 |
+
|
126 |
return {
|
127 |
"valid": True,
|
128 |
"dataframe": df,
|
129 |
"row_count": len(df),
|
130 |
"columns": list(df.columns),
|
131 |
}
|
132 |
+
|
133 |
except Exception as e:
|
134 |
return {"valid": False, "error": f"Error parsing file: {str(e)}"}
|
135 |
|
136 |
|
137 |
def validate_predictions_content_enhanced(predictions: pd.DataFrame) -> Dict:
|
138 |
"""Enhanced prediction content validation with stricter quality checks."""
|
139 |
+
|
140 |
issues = []
|
141 |
warnings = []
|
142 |
quality_metrics = {}
|
143 |
+
|
144 |
# Basic content checks
|
145 |
empty_predictions = predictions["prediction"].str.strip().eq("").sum()
|
146 |
if empty_predictions > 0:
|
147 |
issues.append(f"{empty_predictions} empty predictions found")
|
148 |
+
|
149 |
# Length analysis
|
150 |
pred_lengths = predictions["prediction"].str.len()
|
151 |
quality_metrics["avg_length"] = float(pred_lengths.mean())
|
152 |
quality_metrics["std_length"] = float(pred_lengths.std())
|
153 |
+
|
154 |
# Check for suspiciously short predictions
|
155 |
short_predictions = (pred_lengths < 3).sum()
|
156 |
if short_predictions > len(predictions) * 0.05: # More than 5%
|
157 |
issues.append(f"{short_predictions} very short predictions (< 3 characters)")
|
158 |
+
|
159 |
# Check for suspiciously long predictions
|
160 |
long_predictions = (pred_lengths > 500).sum()
|
161 |
if long_predictions > len(predictions) * 0.01: # More than 1%
|
162 |
warnings.append(f"{long_predictions} very long predictions (> 500 characters)")
|
163 |
+
|
164 |
# Check for repeated predictions (more stringent)
|
165 |
duplicate_predictions = predictions["prediction"].duplicated().sum()
|
166 |
duplicate_rate = duplicate_predictions / len(predictions)
|
167 |
quality_metrics["duplicate_rate"] = float(duplicate_rate)
|
168 |
+
|
169 |
if duplicate_rate > VALIDATION_CONFIG["quality_thresholds"]["max_duplicate_rate"]:
|
170 |
+
issues.append(f"{duplicate_predictions} duplicate prediction texts ({duplicate_rate:.1%})")
|
171 |
+
|
|
|
|
|
172 |
# Check for placeholder text
|
173 |
placeholder_patterns = [
|
174 |
r"^(test|placeholder|todo|xxx|aaa|bbb)$",
|
|
|
176 |
r"^\d+$", # Just numbers
|
177 |
r"^[^\w\s]*$", # Only punctuation
|
178 |
]
|
179 |
+
|
180 |
placeholder_count = 0
|
181 |
for pattern in placeholder_patterns:
|
182 |
+
placeholder_matches = predictions["prediction"].str.match(pattern, flags=re.IGNORECASE, na=False).sum()
|
|
|
|
|
|
|
|
|
183 |
placeholder_count += placeholder_matches
|
184 |
+
|
185 |
if placeholder_count > len(predictions) * 0.02: # More than 2%
|
186 |
issues.append(f"{placeholder_count} placeholder-like predictions detected")
|
187 |
+
|
188 |
# Language detection (basic)
|
189 |
+
non_ascii_rate = predictions["prediction"].str.contains(r"[^\x00-\x7f]", na=False).mean()
|
|
|
|
|
190 |
quality_metrics["non_ascii_rate"] = float(non_ascii_rate)
|
191 |
+
|
192 |
# Check for appropriate character distribution for African languages
|
193 |
if non_ascii_rate < 0.1: # Less than 10% non-ASCII might indicate English-only
|
194 |
+
warnings.append("Low non-ASCII character rate - check if translations include local language scripts")
|
195 |
+
|
|
|
|
|
196 |
# Calculate overall quality score
|
197 |
quality_score = 1.0
|
198 |
quality_score -= len(issues) * 0.3 # Major penalty for issues
|
199 |
quality_score -= len(warnings) * 0.1 # Minor penalty for warnings
|
200 |
+
quality_score -= max(0, duplicate_rate - 0.05) * 2 # Penalty for excessive duplicates
|
201 |
+
|
|
|
|
|
202 |
# Length appropriateness
|
203 |
+
if quality_metrics["avg_length"] < VALIDATION_CONFIG["quality_thresholds"]["min_avg_length"]:
|
|
|
|
|
|
|
204 |
quality_score -= 0.2
|
205 |
+
elif quality_metrics["avg_length"] > VALIDATION_CONFIG["quality_thresholds"]["max_avg_length"]:
|
|
|
|
|
|
|
206 |
quality_score -= 0.1
|
207 |
+
|
208 |
quality_score = max(0.0, min(1.0, quality_score))
|
209 |
+
|
210 |
return {
|
211 |
"has_issues": len(issues) > 0,
|
212 |
"issues": issues,
|
|
|
220 |
predictions: pd.DataFrame, test_set: pd.DataFrame
|
221 |
) -> Dict:
|
222 |
"""Enhanced validation against test set with track-specific analysis."""
|
223 |
+
|
224 |
# Convert IDs to string for comparison
|
225 |
pred_ids = set(predictions["sample_id"].astype(str))
|
226 |
test_ids = set(test_set["sample_id"].astype(str))
|
227 |
+
|
228 |
# Check overall coverage
|
229 |
missing_ids = test_ids - pred_ids
|
230 |
extra_ids = pred_ids - test_ids
|
231 |
matching_ids = pred_ids & test_ids
|
232 |
+
|
233 |
overall_coverage = len(matching_ids) / len(test_ids)
|
234 |
+
|
235 |
# Track-specific coverage analysis
|
236 |
track_coverage = {}
|
237 |
+
|
238 |
for track_name, track_config in EVALUATION_TRACKS.items():
|
239 |
track_languages = track_config["languages"]
|
240 |
+
|
241 |
# Filter test set to track languages
|
242 |
track_test_set = test_set[
|
243 |
+
(test_set["source_language"].isin(track_languages)) &
|
244 |
+
(test_set["target_language"].isin(track_languages))
|
245 |
]
|
246 |
+
|
247 |
if len(track_test_set) == 0:
|
248 |
continue
|
249 |
+
|
250 |
track_test_ids = set(track_test_set["sample_id"].astype(str))
|
251 |
track_matching_ids = pred_ids & track_test_ids
|
252 |
+
|
253 |
track_coverage[track_name] = {
|
254 |
"total_samples": len(track_test_set),
|
255 |
"covered_samples": len(track_matching_ids),
|
256 |
"coverage_rate": len(track_matching_ids) / len(track_test_set),
|
257 |
+
"meets_minimum": len(track_matching_ids) >= VALIDATION_CONFIG["min_samples_per_track"][track_name],
|
|
|
258 |
"min_required": VALIDATION_CONFIG["min_samples_per_track"][track_name],
|
259 |
}
|
260 |
+
|
261 |
# Language pair coverage analysis
|
262 |
pair_coverage = {}
|
263 |
for _, row in test_set.iterrows():
|
264 |
pair_key = f"{row['source_language']}_{row['target_language']}"
|
265 |
if pair_key not in pair_coverage:
|
266 |
pair_coverage[pair_key] = {"total": 0, "covered": 0}
|
267 |
+
|
268 |
pair_coverage[pair_key]["total"] += 1
|
269 |
if str(row["sample_id"]) in pred_ids:
|
270 |
pair_coverage[pair_key]["covered"] += 1
|
271 |
+
|
272 |
# Calculate pair-wise coverage rates
|
273 |
for pair_key in pair_coverage:
|
274 |
pair_info = pair_coverage[pair_key]
|
275 |
pair_info["coverage_rate"] = pair_info["covered"] / pair_info["total"]
|
276 |
+
|
277 |
# Missing rate validation
|
278 |
missing_rate = len(missing_ids) / len(test_ids)
|
279 |
meets_missing_threshold = missing_rate <= VALIDATION_CONFIG["max_missing_rate"]
|
280 |
+
|
281 |
return {
|
282 |
"overall_coverage": overall_coverage,
|
283 |
"missing_count": len(missing_ids),
|
|
|
293 |
}
|
294 |
|
295 |
|
296 |
+
def assess_statistical_adequacy(
|
297 |
+
validation_result: Dict, model_category: str
|
298 |
+
) -> Dict:
|
299 |
"""Assess statistical adequacy for scientific evaluation."""
|
300 |
+
|
301 |
adequacy_assessment = {
|
302 |
"overall_adequate": True,
|
303 |
"track_adequacy": {},
|
304 |
"recommendations": [],
|
305 |
"statistical_power_estimate": {},
|
306 |
}
|
307 |
+
|
308 |
track_coverage = validation_result.get("track_coverage", {})
|
309 |
+
|
310 |
for track_name, coverage_info in track_coverage.items():
|
311 |
track_config = EVALUATION_TRACKS[track_name]
|
312 |
+
|
313 |
# Sample size adequacy
|
314 |
covered_samples = coverage_info["covered_samples"]
|
315 |
min_required = coverage_info["min_required"]
|
316 |
+
|
317 |
sample_adequate = covered_samples >= min_required
|
318 |
+
|
319 |
# Coverage rate adequacy
|
320 |
coverage_rate = coverage_info["coverage_rate"]
|
321 |
coverage_adequate = coverage_rate >= 0.8 # 80% coverage minimum
|
322 |
+
|
323 |
# Statistical power estimation (simplified)
|
324 |
estimated_power = min(1.0, covered_samples / (min_required * 1.5))
|
325 |
+
|
326 |
track_adequate = sample_adequate and coverage_adequate
|
327 |
+
|
328 |
adequacy_assessment["track_adequacy"][track_name] = {
|
329 |
"sample_adequate": sample_adequate,
|
330 |
"coverage_adequate": coverage_adequate,
|
|
|
334 |
"coverage_rate": coverage_rate,
|
335 |
"estimated_power": estimated_power,
|
336 |
}
|
337 |
+
|
338 |
if not track_adequate:
|
339 |
adequacy_assessment["overall_adequate"] = False
|
340 |
+
|
341 |
adequacy_assessment["statistical_power_estimate"][track_name] = estimated_power
|
342 |
+
|
343 |
# Generate recommendations
|
344 |
if not adequacy_assessment["overall_adequate"]:
|
345 |
inadequate_tracks = [
|
346 |
+
track for track, info in adequacy_assessment["track_adequacy"].items()
|
|
|
347 |
if not info["overall_adequate"]
|
348 |
]
|
349 |
adequacy_assessment["recommendations"].append(
|
350 |
f"Insufficient samples for tracks: {', '.join(inadequate_tracks)}"
|
351 |
)
|
352 |
+
|
353 |
# Category-specific recommendations
|
354 |
+
if model_category == "commercial" and not adequacy_assessment["track_adequacy"].get("google_comparable", {}).get("overall_adequate", False):
|
|
|
|
|
355 |
adequacy_assessment["recommendations"].append(
|
356 |
"Commercial models should ensure adequate coverage of Google-comparable track"
|
357 |
)
|
358 |
+
|
359 |
return adequacy_assessment
|
360 |
|
361 |
|
|
|
368 |
detected_category: str = "community",
|
369 |
) -> str:
|
370 |
"""Generate comprehensive scientific validation report."""
|
371 |
+
|
372 |
report = []
|
373 |
+
|
374 |
# Header
|
375 |
report.append(f"# π¬ Scientific Validation Report: {model_name or 'Submission'}")
|
376 |
report.append("")
|
377 |
+
|
378 |
# Model categorization
|
379 |
+
category_info = MODEL_CATEGORIES.get(detected_category, MODEL_CATEGORIES["community"])
|
|
|
|
|
380 |
report.append(f"**Detected Model Category**: {category_info['name']}")
|
381 |
report.append(f"**Category Description**: {category_info['description']}")
|
382 |
report.append("")
|
383 |
+
|
384 |
# File format validation
|
385 |
if format_result["valid"]:
|
386 |
report.append("β
**File Format**: Valid")
|
|
|
390 |
report.append("β **File Format**: Invalid")
|
391 |
report.append(f" - Error: {format_result['error']}")
|
392 |
return "\n".join(report)
|
393 |
+
|
394 |
# Content quality validation
|
395 |
quality_score = content_result.get("quality_score", 0.0)
|
396 |
+
|
397 |
if content_result["has_issues"]:
|
398 |
report.append("β **Content Quality**: Issues Found")
|
399 |
for issue in content_result["issues"]:
|
400 |
report.append(f" - β {issue}")
|
401 |
else:
|
402 |
report.append("β
**Content Quality**: Good")
|
403 |
+
|
404 |
if content_result["warnings"]:
|
405 |
for warning in content_result["warnings"]:
|
406 |
report.append(f" - β οΈ {warning}")
|
407 |
+
|
408 |
report.append(f" - **Quality Score**: {quality_score:.2f}/1.00")
|
409 |
report.append("")
|
410 |
+
|
411 |
# Test set coverage validation
|
412 |
overall_coverage = test_set_result["overall_coverage"]
|
413 |
meets_threshold = test_set_result["meets_missing_threshold"]
|
414 |
+
|
415 |
if overall_coverage == 1.0:
|
416 |
report.append("β
**Test Set Coverage**: Complete")
|
417 |
elif overall_coverage >= 0.95 and meets_threshold:
|
418 |
report.append("β
**Test Set Coverage**: Adequate")
|
419 |
else:
|
420 |
report.append("β **Test Set Coverage**: Insufficient")
|
421 |
+
|
422 |
+
report.append(f" - Coverage: {overall_coverage:.1%} ({test_set_result['matching_count']:,} / {test_set_result['matching_count'] + test_set_result['missing_count']:,})")
|
|
|
|
|
423 |
report.append(f" - Missing Rate: {test_set_result['missing_rate']:.1%}")
|
424 |
report.append("")
|
425 |
+
|
426 |
# Track-specific coverage analysis
|
427 |
report.append("## π Track-Specific Analysis")
|
428 |
+
|
429 |
track_coverage = test_set_result.get("track_coverage", {})
|
430 |
for track_name, coverage_info in track_coverage.items():
|
431 |
track_config = EVALUATION_TRACKS[track_name]
|
432 |
+
|
433 |
status = "β
" if coverage_info["meets_minimum"] else "β"
|
434 |
report.append(f"### {status} {track_config['name']}")
|
435 |
+
|
436 |
+
report.append(f" - **Samples**: {coverage_info['covered_samples']:,} / {coverage_info['total_samples']:,}")
|
|
|
|
|
437 |
report.append(f" - **Coverage**: {coverage_info['coverage_rate']:.1%}")
|
438 |
report.append(f" - **Minimum Required**: {coverage_info['min_required']:,}")
|
439 |
+
report.append(f" - **Status**: {'Adequate' if coverage_info['meets_minimum'] else 'Insufficient'}")
|
|
|
|
|
440 |
report.append("")
|
441 |
+
|
442 |
# Statistical adequacy assessment
|
443 |
report.append("## π¬ Statistical Adequacy Assessment")
|
444 |
+
|
445 |
if adequacy_result["overall_adequate"]:
|
446 |
+
report.append("β
**Overall Assessment**: Statistically adequate for scientific evaluation")
|
|
|
|
|
447 |
else:
|
448 |
+
report.append("β **Overall Assessment**: Insufficient for rigorous scientific evaluation")
|
449 |
+
|
|
|
|
|
450 |
# Track adequacy details
|
451 |
for track_name, track_adequacy in adequacy_result["track_adequacy"].items():
|
452 |
track_config = EVALUATION_TRACKS[track_name]
|
453 |
power = track_adequacy["estimated_power"]
|
454 |
+
|
455 |
status = "β
" if track_adequacy["overall_adequate"] else "β"
|
456 |
+
report.append(f" - {status} **{track_config['name']}**: Statistical power β {power:.1%}")
|
457 |
+
|
|
|
|
|
458 |
# Recommendations
|
459 |
if adequacy_result["recommendations"]:
|
460 |
report.append("")
|
461 |
report.append("## π‘ Recommendations")
|
462 |
for rec in adequacy_result["recommendations"]:
|
463 |
report.append(f" - {rec}")
|
464 |
+
|
465 |
# Final verdict
|
466 |
report.append("")
|
467 |
all_checks_pass = (
|
468 |
+
format_result["valid"] and
|
469 |
+
not content_result["has_issues"] and
|
470 |
+
overall_coverage >= 0.95 and
|
471 |
+
meets_threshold and
|
472 |
+
adequacy_result["overall_adequate"]
|
473 |
)
|
474 |
+
|
475 |
if all_checks_pass:
|
476 |
report.append("π **Final Verdict**: Ready for scientific evaluation!")
|
477 |
elif format_result["valid"] and overall_coverage >= 0.8:
|
478 |
report.append("β οΈ **Final Verdict**: Can be evaluated with limitations")
|
479 |
else:
|
480 |
report.append("β **Final Verdict**: Please address issues before submission")
|
481 |
+
|
482 |
return "\n".join(report)
|
483 |
|
484 |
|
485 |
def validate_submission_scientific(
|
486 |
+
file_content: bytes,
|
487 |
+
filename: str,
|
488 |
+
test_set: pd.DataFrame,
|
489 |
model_name: str = "",
|
490 |
author: str = "",
|
491 |
+
description: str = ""
|
492 |
) -> Dict:
|
493 |
"""Complete scientific validation pipeline for submissions."""
|
494 |
+
|
495 |
# Step 1: Detect model category
|
496 |
detected_category = detect_model_category(model_name, author, description)
|
497 |
+
|
498 |
# Step 2: Enhanced file format validation
|
499 |
format_result = validate_file_format_enhanced(file_content, filename)
|
500 |
if not format_result["valid"]:
|
501 |
return {
|
502 |
"valid": False,
|
503 |
+
"can_evaluate": False, # New field for evaluation eligibility
|
504 |
"category": detected_category,
|
505 |
"report": generate_scientific_validation_report(
|
506 |
format_result, {}, {}, {}, model_name, detected_category
|
|
|
508 |
"predictions": None,
|
509 |
"adequacy": {},
|
510 |
}
|
511 |
+
|
512 |
predictions = format_result["dataframe"]
|
513 |
+
|
514 |
# Step 3: Enhanced content validation
|
515 |
content_result = validate_predictions_content_enhanced(predictions)
|
516 |
+
|
517 |
# Step 4: Enhanced test set validation
|
518 |
test_set_result = validate_against_test_set_enhanced(predictions, test_set)
|
519 |
+
|
520 |
# Step 5: Statistical adequacy assessment
|
521 |
adequacy_result = assess_statistical_adequacy(test_set_result, detected_category)
|
522 |
+
|
523 |
# Step 6: Generate comprehensive report
|
524 |
report = generate_scientific_validation_report(
|
525 |
+
format_result, content_result, test_set_result, adequacy_result,
|
526 |
+
model_name, detected_category
|
|
|
|
|
|
|
|
|
527 |
)
|
528 |
+
|
529 |
+
# Overall validity determination (strict scientific standards)
|
530 |
+
is_scientifically_valid = (
|
531 |
+
format_result["valid"] and
|
532 |
+
not content_result["has_issues"] and
|
533 |
+
test_set_result["overall_coverage"] >= 0.95 and
|
534 |
+
test_set_result["meets_missing_threshold"] and
|
535 |
+
adequacy_result["overall_adequate"]
|
536 |
)
|
537 |
+
|
538 |
+
# Evaluation eligibility (more permissive - can evaluate with limitations)
|
539 |
+
can_evaluate = (
|
540 |
+
format_result["valid"] and
|
541 |
+
test_set_result["overall_coverage"] >= 0.8 and # 80% coverage minimum
|
542 |
+
not any("β" in issue for issue in content_result.get("issues", [])) # No critical content issues
|
543 |
+
)
|
544 |
+
|
545 |
return {
|
546 |
+
"valid": is_scientifically_valid,
|
547 |
+
"can_evaluate": can_evaluate, # New field
|
548 |
"category": detected_category,
|
549 |
"coverage": test_set_result["overall_coverage"],
|
550 |
"report": report,
|
|
|
557 |
"validation_version": "2.0-scientific",
|
558 |
"detected_category": detected_category,
|
559 |
"statistical_adequacy": adequacy_result["overall_adequate"],
|
560 |
+
"evaluation_recommended": can_evaluate,
|
561 |
},
|
562 |
+
}
|