Spaces:
Sleeping
Sleeping
Update src/plotting.py
Browse files- src/plotting.py +126 -370
src/plotting.py
CHANGED
@@ -1,7 +1,4 @@
|
|
1 |
# src/plotting.py
|
2 |
-
import json
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
import matplotlib.gridspec as gridspec
|
5 |
import plotly.graph_objects as go
|
6 |
import plotly.express as px
|
7 |
from plotly.subplots import make_subplots
|
@@ -18,25 +15,13 @@ from config import (
|
|
18 |
EVALUATION_TRACKS,
|
19 |
MODEL_CATEGORIES,
|
20 |
CHART_CONFIG,
|
21 |
-
STATISTICAL_CONFIG,
|
22 |
-
SAMPLE_SIZE_RECOMMENDATIONS,
|
23 |
)
|
24 |
|
25 |
-
# Scientific plotting style
|
26 |
-
plt.style.use("default")
|
27 |
-
plt.rcParams["figure.facecolor"] = "white"
|
28 |
-
plt.rcParams["axes.facecolor"] = "white"
|
29 |
-
plt.rcParams["font.size"] = 10
|
30 |
-
plt.rcParams["axes.labelsize"] = 12
|
31 |
-
plt.rcParams["axes.titlesize"] = 14
|
32 |
-
plt.rcParams["xtick.labelsize"] = 10
|
33 |
-
plt.rcParams["ytick.labelsize"] = 10
|
34 |
-
|
35 |
|
36 |
-
def
|
37 |
df: pd.DataFrame, track: str, metric: str = "quality", top_n: int = 15
|
38 |
) -> go.Figure:
|
39 |
-
"""Create
|
40 |
|
41 |
if df.empty:
|
42 |
fig = go.Figure()
|
@@ -46,7 +31,11 @@ def create_scientific_leaderboard_plot(
|
|
46 |
x=0.5, y=0.5, showarrow=False,
|
47 |
font=dict(size=16)
|
48 |
)
|
49 |
-
fig.update_layout(
|
|
|
|
|
|
|
|
|
50 |
return fig
|
51 |
|
52 |
# Get top N models for this track
|
@@ -72,18 +61,15 @@ def create_scientific_leaderboard_plot(
|
|
72 |
return fig
|
73 |
|
74 |
# Create color mapping by category
|
75 |
-
|
76 |
-
for i, category in enumerate(MODEL_CATEGORIES.keys()):
|
77 |
-
category_colors[category] = MODEL_CATEGORIES[category]["color"]
|
78 |
-
|
79 |
-
colors = [category_colors.get(cat, "#808080") for cat in valid_models["model_category"]]
|
80 |
|
81 |
# Main bar plot
|
82 |
fig = go.Figure()
|
83 |
|
84 |
# Add bars with error bars if confidence intervals available
|
|
|
85 |
if ci_lower_col in valid_models.columns and ci_upper_col in valid_models.columns:
|
86 |
-
|
87 |
type="data",
|
88 |
array=valid_models[ci_upper_col] - valid_models[metric_col],
|
89 |
arrayminus=valid_models[metric_col] - valid_models[ci_lower_col],
|
@@ -91,15 +77,13 @@ def create_scientific_leaderboard_plot(
|
|
91 |
thickness=2,
|
92 |
width=4,
|
93 |
)
|
94 |
-
else:
|
95 |
-
error_y = None
|
96 |
|
97 |
fig.add_trace(go.Bar(
|
98 |
y=valid_models["model_name"],
|
99 |
x=valid_models[metric_col],
|
100 |
orientation="h",
|
101 |
marker=dict(color=colors, line=dict(color="black", width=0.5)),
|
102 |
-
error_x=
|
103 |
text=[f"{score:.3f}" for score in valid_models[metric_col]],
|
104 |
textposition="auto",
|
105 |
hovertemplate=(
|
@@ -125,32 +109,21 @@ def create_scientific_leaderboard_plot(
|
|
125 |
yaxis_title="Models",
|
126 |
height=max(400, len(valid_models) * 35 + 100),
|
127 |
margin=dict(l=20, r=20, t=60, b=20),
|
128 |
-
|
129 |
-
|
130 |
font=dict(size=12),
|
131 |
)
|
132 |
|
133 |
# Reverse y-axis to show best model at top
|
134 |
fig.update_yaxes(autorange="reversed")
|
135 |
|
136 |
-
# Add category legend
|
137 |
-
for category, info in MODEL_CATEGORIES.items():
|
138 |
-
if category in valid_models["model_category"].values:
|
139 |
-
fig.add_trace(go.Scatter(
|
140 |
-
x=[None], y=[None],
|
141 |
-
mode="markers",
|
142 |
-
marker=dict(size=10, color=info["color"]),
|
143 |
-
name=info["name"],
|
144 |
-
showlegend=True,
|
145 |
-
))
|
146 |
-
|
147 |
return fig
|
148 |
|
149 |
|
150 |
-
def
|
151 |
model_results: Dict, track: str, metric: str = "quality_score"
|
152 |
) -> go.Figure:
|
153 |
-
"""Create
|
154 |
|
155 |
if not model_results or "tracks" not in model_results:
|
156 |
fig = go.Figure()
|
@@ -212,14 +185,16 @@ def create_language_pair_heatmap_scientific(
|
|
212 |
width=700,
|
213 |
font=dict(size=12),
|
214 |
xaxis=dict(side="bottom"),
|
215 |
-
yaxis=dict(autorange="reversed"),
|
|
|
|
|
216 |
)
|
217 |
|
218 |
return fig
|
219 |
|
220 |
|
221 |
-
def
|
222 |
-
"""Create
|
223 |
|
224 |
if df.empty:
|
225 |
fig = go.Figure()
|
@@ -279,26 +254,11 @@ def create_statistical_comparison_plot(df: pd.DataFrame, track: str) -> go.Figur
|
|
279 |
showlegend=False,
|
280 |
hoverinfo="skip",
|
281 |
))
|
282 |
-
|
283 |
-
# CI endpoints
|
284 |
-
fig.add_trace(go.Scatter(
|
285 |
-
x=[model[ci_lower_col], model[ci_upper_col]],
|
286 |
-
y=[i, i],
|
287 |
-
mode="markers",
|
288 |
-
marker=dict(
|
289 |
-
symbol="line-ns",
|
290 |
-
size=10,
|
291 |
-
color=color,
|
292 |
-
line=dict(width=2),
|
293 |
-
),
|
294 |
-
showlegend=False,
|
295 |
-
hoverinfo="skip",
|
296 |
-
))
|
297 |
|
298 |
# Customize layout
|
299 |
track_info = EVALUATION_TRACKS[track]
|
300 |
fig.update_layout(
|
301 |
-
title=f"📊 {track_info['name']} -
|
302 |
xaxis_title="Quality Score",
|
303 |
yaxis_title="Models",
|
304 |
height=max(400, len(valid_models) * 40 + 100),
|
@@ -309,371 +269,167 @@ def create_statistical_comparison_plot(df: pd.DataFrame, track: str) -> go.Figur
|
|
309 |
autorange="reversed",
|
310 |
),
|
311 |
showlegend=False,
|
312 |
-
|
313 |
-
|
314 |
)
|
315 |
|
316 |
return fig
|
317 |
|
318 |
|
319 |
-
def
|
320 |
-
"""Create
|
321 |
|
322 |
-
if
|
323 |
fig = go.Figure()
|
324 |
-
fig.add_annotation(
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
adequate_col = f"{track}_adequate"
|
329 |
-
|
330 |
-
# Filter to adequate models
|
331 |
-
valid_models = df[df[adequate_col] & (df[metric_col] > 0)]
|
332 |
-
|
333 |
-
if valid_models.empty:
|
334 |
-
fig = go.Figure()
|
335 |
-
fig.add_annotation(text="No adequate models found", x=0.5, y=0.5, showarrow=False)
|
336 |
return fig
|
337 |
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
for category, info in MODEL_CATEGORIES.items():
|
342 |
-
category_models = valid_models[valid_models["model_category"] == category]
|
343 |
-
|
344 |
-
if len(category_models) > 0:
|
345 |
-
fig.add_trace(go.Box(
|
346 |
-
y=category_models[metric_col],
|
347 |
-
name=info["name"],
|
348 |
-
marker_color=info["color"],
|
349 |
-
boxpoints="all", # Show all points
|
350 |
-
jitter=0.3,
|
351 |
-
pointpos=-1.8,
|
352 |
-
hovertemplate=(
|
353 |
-
f"<b>{info['name']}</b><br>" +
|
354 |
-
"Quality: %{y:.4f}<br>" +
|
355 |
-
"Model: %{customdata}<br>" +
|
356 |
-
"<extra></extra>"
|
357 |
-
),
|
358 |
-
customdata=category_models["model_name"],
|
359 |
-
))
|
360 |
-
|
361 |
-
# Customize layout
|
362 |
-
track_info = EVALUATION_TRACKS[track]
|
363 |
-
fig.update_layout(
|
364 |
-
title=f"📈 {track_info['name']} - Performance by Category",
|
365 |
-
xaxis_title="Model Category",
|
366 |
-
yaxis_title="Quality Score",
|
367 |
-
height=500,
|
368 |
-
showlegend=False,
|
369 |
-
plot_bgcolor="white",
|
370 |
-
paper_bgcolor="white",
|
371 |
-
)
|
372 |
-
|
373 |
-
return fig
|
374 |
-
|
375 |
-
|
376 |
-
def create_adequacy_analysis_plot(df: pd.DataFrame) -> go.Figure:
|
377 |
-
"""Create analysis plot for statistical adequacy across tracks."""
|
378 |
|
379 |
-
if
|
380 |
fig = go.Figure()
|
381 |
-
fig.add_annotation(
|
|
|
|
|
|
|
382 |
return fig
|
383 |
|
|
|
384 |
fig = make_subplots(
|
385 |
-
rows=2, cols=
|
386 |
-
subplot_titles=(
|
387 |
-
|
388 |
-
|
389 |
-
"Scientific Adequacy Scores",
|
390 |
-
"Model Categories Distribution"
|
391 |
-
),
|
392 |
-
specs=[
|
393 |
-
[{"type": "bar"}, {"type": "pie"}],
|
394 |
-
[{"type": "histogram"}, {"type": "bar"}]
|
395 |
-
]
|
396 |
)
|
397 |
|
398 |
-
#
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
if samples_col in df.columns:
|
405 |
-
total_samples = df[df[samples_col] > 0][samples_col].sum()
|
406 |
-
track_names.append(track.replace("_", " ").title())
|
407 |
-
sample_counts.append(total_samples)
|
408 |
-
|
409 |
-
if track_names:
|
410 |
fig.add_trace(
|
411 |
-
go.Bar(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
412 |
row=1, col=1
|
413 |
)
|
414 |
-
|
415 |
-
|
416 |
-
adequacy_bins = pd.cut(
|
417 |
-
df["scientific_adequacy_score"],
|
418 |
-
bins=[0, 0.3, 0.6, 0.8, 1.0],
|
419 |
-
labels=["Poor", "Fair", "Good", "Excellent"]
|
420 |
-
)
|
421 |
-
adequacy_counts = adequacy_bins.value_counts()
|
422 |
-
|
423 |
-
if not adequacy_counts.empty:
|
424 |
fig.add_trace(
|
425 |
-
go.
|
426 |
-
|
427 |
-
|
428 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
),
|
430 |
-
row=
|
431 |
)
|
432 |
|
433 |
-
#
|
434 |
-
|
435 |
-
go.Histogram(
|
436 |
-
x=df["scientific_adequacy_score"],
|
437 |
-
nbinsx=20,
|
438 |
-
name="Adequacy Scores"
|
439 |
-
),
|
440 |
-
row=2, col=1
|
441 |
-
)
|
442 |
-
|
443 |
-
# Model categories distribution
|
444 |
-
category_counts = df["model_category"].value_counts()
|
445 |
-
category_colors = [MODEL_CATEGORIES.get(cat, {}).get("color", "#808080") for cat in category_counts.index]
|
446 |
-
|
447 |
-
fig.add_trace(
|
448 |
-
go.Bar(
|
449 |
-
x=category_counts.index,
|
450 |
-
y=category_counts.values,
|
451 |
-
marker_color=category_colors,
|
452 |
-
name="Categories"
|
453 |
-
),
|
454 |
-
row=2, col=2
|
455 |
-
)
|
456 |
-
|
457 |
fig.update_layout(
|
458 |
-
title="📊
|
459 |
height=800,
|
460 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
461 |
)
|
462 |
|
|
|
|
|
|
|
|
|
|
|
463 |
return fig
|
464 |
|
465 |
|
466 |
-
def
|
467 |
-
"""Create
|
468 |
|
469 |
if df.empty:
|
470 |
fig = go.Figure()
|
471 |
fig.add_annotation(text="No data available", x=0.5, y=0.5, showarrow=False)
|
472 |
return fig
|
473 |
|
474 |
-
|
475 |
-
quality_cols = [f"{track}_quality" for track in EVALUATION_TRACKS.keys()]
|
476 |
-
available_cols = [col for col in quality_cols if col in df.columns]
|
477 |
-
|
478 |
-
if len(available_cols) < 2:
|
479 |
-
fig = go.Figure()
|
480 |
-
fig.add_annotation(text="Need at least 2 tracks for comparison", x=0.5, y=0.5, showarrow=False)
|
481 |
-
return fig
|
482 |
-
|
483 |
-
# Filter to models with data in multiple tracks
|
484 |
-
multi_track_models = df.copy()
|
485 |
-
for col in available_cols:
|
486 |
-
multi_track_models = multi_track_models[multi_track_models[col] > 0]
|
487 |
-
|
488 |
-
if len(multi_track_models) < 3:
|
489 |
-
fig = go.Figure()
|
490 |
-
fig.add_annotation(text="Insufficient models for cross-track analysis", x=0.5, y=0.5, showarrow=False)
|
491 |
-
return fig
|
492 |
|
493 |
-
#
|
494 |
-
|
495 |
-
for i in range(len(available_cols))
|
496 |
-
for j in range(i+1, len(available_cols))]
|
497 |
|
498 |
-
if
|
499 |
fig = go.Figure()
|
500 |
-
fig.add_annotation(text="No
|
501 |
return fig
|
502 |
|
503 |
-
# Use first pair for demonstration
|
504 |
-
x_col, y_col = track_pairs[0]
|
505 |
-
x_track = x_col.replace("_quality", "").replace("_", " ").title()
|
506 |
-
y_track = y_col.replace("_quality", "").replace("_", " ").title()
|
507 |
-
|
508 |
fig = go.Figure()
|
509 |
|
510 |
-
#
|
511 |
for category, info in MODEL_CATEGORIES.items():
|
512 |
-
category_models =
|
513 |
|
514 |
if len(category_models) > 0:
|
515 |
-
fig.add_trace(go.
|
516 |
-
|
517 |
-
y=category_models[y_col],
|
518 |
-
mode="markers",
|
519 |
-
marker=dict(
|
520 |
-
size=10,
|
521 |
-
color=info["color"],
|
522 |
-
line=dict(color="black", width=1),
|
523 |
-
),
|
524 |
name=info["name"],
|
525 |
-
|
|
|
|
|
|
|
526 |
hovertemplate=(
|
527 |
-
"<b
|
528 |
-
|
529 |
-
|
530 |
-
f"Category: {info['name']}<br>" +
|
531 |
"<extra></extra>"
|
532 |
),
|
|
|
533 |
))
|
534 |
|
535 |
-
# Add diagonal line for reference
|
536 |
-
min_val = min(multi_track_models[x_col].min(), multi_track_models[y_col].min())
|
537 |
-
max_val = max(multi_track_models[x_col].max(), multi_track_models[y_col].max())
|
538 |
-
|
539 |
-
fig.add_trace(go.Scatter(
|
540 |
-
x=[min_val, max_val],
|
541 |
-
y=[min_val, max_val],
|
542 |
-
mode="lines",
|
543 |
-
line=dict(dash="dash", color="gray", width=2),
|
544 |
-
name="Perfect Correlation",
|
545 |
-
showlegend=False,
|
546 |
-
hoverinfo="skip",
|
547 |
-
))
|
548 |
-
|
549 |
-
fig.update_layout(
|
550 |
-
title=f"🔄 Cross-Track Performance: {x_track} vs {y_track}",
|
551 |
-
xaxis_title=f"{x_track} Quality Score",
|
552 |
-
yaxis_title=f"{y_track} Quality Score",
|
553 |
-
height=600,
|
554 |
-
width=600,
|
555 |
-
plot_bgcolor="white",
|
556 |
-
paper_bgcolor="white",
|
557 |
-
)
|
558 |
-
|
559 |
-
return fig
|
560 |
-
|
561 |
-
|
562 |
-
def create_scientific_model_detail_plot(model_results: Dict, model_name: str, track: str) -> go.Figure:
|
563 |
-
"""Create detailed scientific analysis for a specific model."""
|
564 |
-
|
565 |
-
if not model_results or "tracks" not in model_results:
|
566 |
-
fig = go.Figure()
|
567 |
-
fig.add_annotation(text="No model results available", x=0.5, y=0.5, showarrow=False)
|
568 |
-
return fig
|
569 |
-
|
570 |
-
track_data = model_results["tracks"].get(track, {})
|
571 |
-
if track_data.get("error") or "pair_metrics" not in track_data:
|
572 |
-
fig = go.Figure()
|
573 |
-
fig.add_annotation(text=f"No data for {track} track", x=0.5, y=0.5, showarrow=False)
|
574 |
-
return fig
|
575 |
-
|
576 |
-
pair_metrics = track_data["pair_metrics"]
|
577 |
-
track_languages = EVALUATION_TRACKS[track]["languages"]
|
578 |
-
|
579 |
-
# Extract data for plotting
|
580 |
-
pairs = []
|
581 |
-
quality_means = []
|
582 |
-
quality_cis = []
|
583 |
-
bleu_means = []
|
584 |
-
sample_counts = []
|
585 |
-
|
586 |
-
for src in track_languages:
|
587 |
-
for tgt in track_languages:
|
588 |
-
if src == tgt:
|
589 |
-
continue
|
590 |
-
|
591 |
-
pair_key = f"{src}_to_{tgt}"
|
592 |
-
if pair_key in pair_metrics:
|
593 |
-
metrics = pair_metrics[pair_key]
|
594 |
-
|
595 |
-
if "quality_score" in metrics and "sample_count" in metrics:
|
596 |
-
pair_label = f"{LANGUAGE_NAMES.get(src, src)} → {LANGUAGE_NAMES.get(tgt, tgt)}"
|
597 |
-
pairs.append(pair_label)
|
598 |
-
|
599 |
-
quality_stats = metrics["quality_score"]
|
600 |
-
quality_means.append(quality_stats["mean"])
|
601 |
-
quality_cis.append([quality_stats["ci_lower"], quality_stats["ci_upper"]])
|
602 |
-
|
603 |
-
bleu_stats = metrics.get("bleu", {"mean": 0})
|
604 |
-
bleu_means.append(bleu_stats["mean"])
|
605 |
-
|
606 |
-
sample_counts.append(metrics["sample_count"])
|
607 |
-
|
608 |
-
if not pairs:
|
609 |
-
fig = go.Figure()
|
610 |
-
fig.add_annotation(text="No language pair data available", x=0.5, y=0.5, showarrow=False)
|
611 |
-
return fig
|
612 |
-
|
613 |
-
# Create subplots
|
614 |
-
fig = make_subplots(
|
615 |
-
rows=2, cols=1,
|
616 |
-
subplot_titles=(
|
617 |
-
"Quality Scores by Language Pair (with 95% CI)",
|
618 |
-
"BLEU Scores by Language Pair"
|
619 |
-
),
|
620 |
-
vertical_spacing=0.15,
|
621 |
-
)
|
622 |
-
|
623 |
-
# Quality scores with confidence intervals
|
624 |
-
error_y = dict(
|
625 |
-
type="data",
|
626 |
-
array=[ci[1] - mean for ci, mean in zip(quality_cis, quality_means)],
|
627 |
-
arrayminus=[mean - ci[0] for ci, mean in zip(quality_cis, quality_means)],
|
628 |
-
visible=True,
|
629 |
-
thickness=2,
|
630 |
-
width=4,
|
631 |
-
)
|
632 |
-
|
633 |
-
fig.add_trace(
|
634 |
-
go.Bar(
|
635 |
-
x=pairs,
|
636 |
-
y=quality_means,
|
637 |
-
error_y=error_y,
|
638 |
-
name="Quality Score",
|
639 |
-
marker_color="steelblue",
|
640 |
-
text=[f"{score:.3f}" for score in quality_means],
|
641 |
-
textposition="outside",
|
642 |
-
hovertemplate=(
|
643 |
-
"<b>%{x}</b><br>" +
|
644 |
-
"Quality: %{y:.4f}<br>" +
|
645 |
-
"Samples: %{customdata}<br>" +
|
646 |
-
"<extra></extra>"
|
647 |
-
),
|
648 |
-
customdata=sample_counts,
|
649 |
-
),
|
650 |
-
row=1, col=1
|
651 |
-
)
|
652 |
-
|
653 |
-
# BLEU scores
|
654 |
-
fig.add_trace(
|
655 |
-
go.Bar(
|
656 |
-
x=pairs,
|
657 |
-
y=bleu_means,
|
658 |
-
name="BLEU Score",
|
659 |
-
marker_color="coral",
|
660 |
-
text=[f"{score:.1f}" for score in bleu_means],
|
661 |
-
textposition="outside",
|
662 |
-
),
|
663 |
-
row=2, col=1
|
664 |
-
)
|
665 |
-
|
666 |
# Customize layout
|
667 |
track_info = EVALUATION_TRACKS[track]
|
668 |
fig.update_layout(
|
669 |
-
title=f"
|
670 |
-
|
|
|
|
|
671 |
showlegend=False,
|
672 |
-
|
|
|
673 |
)
|
674 |
|
675 |
-
# Rotate x-axis labels
|
676 |
-
fig.update_xaxes(tickangle=45, row=1, col=1)
|
677 |
-
fig.update_xaxes(tickangle=45, row=2, col=1)
|
678 |
-
|
679 |
return fig
|
|
|
1 |
# src/plotting.py
|
|
|
|
|
|
|
2 |
import plotly.graph_objects as go
|
3 |
import plotly.express as px
|
4 |
from plotly.subplots import make_subplots
|
|
|
15 |
EVALUATION_TRACKS,
|
16 |
MODEL_CATEGORIES,
|
17 |
CHART_CONFIG,
|
|
|
|
|
18 |
)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
def create_leaderboard_plot(
|
22 |
df: pd.DataFrame, track: str, metric: str = "quality", top_n: int = 15
|
23 |
) -> go.Figure:
|
24 |
+
"""Create leaderboard plot with confidence intervals."""
|
25 |
|
26 |
if df.empty:
|
27 |
fig = go.Figure()
|
|
|
31 |
x=0.5, y=0.5, showarrow=False,
|
32 |
font=dict(size=16)
|
33 |
)
|
34 |
+
fig.update_layout(
|
35 |
+
title=f"No Data Available - {track.title()} Track",
|
36 |
+
paper_bgcolor="rgba(0,0,0,0)",
|
37 |
+
plot_bgcolor="rgba(0,0,0,0)"
|
38 |
+
)
|
39 |
return fig
|
40 |
|
41 |
# Get top N models for this track
|
|
|
61 |
return fig
|
62 |
|
63 |
# Create color mapping by category
|
64 |
+
colors = [MODEL_CATEGORIES.get(cat, {}).get("color", "#808080") for cat in valid_models["model_category"]]
|
|
|
|
|
|
|
|
|
65 |
|
66 |
# Main bar plot
|
67 |
fig = go.Figure()
|
68 |
|
69 |
# Add bars with error bars if confidence intervals available
|
70 |
+
error_x = None
|
71 |
if ci_lower_col in valid_models.columns and ci_upper_col in valid_models.columns:
|
72 |
+
error_x = dict(
|
73 |
type="data",
|
74 |
array=valid_models[ci_upper_col] - valid_models[metric_col],
|
75 |
arrayminus=valid_models[metric_col] - valid_models[ci_lower_col],
|
|
|
77 |
thickness=2,
|
78 |
width=4,
|
79 |
)
|
|
|
|
|
80 |
|
81 |
fig.add_trace(go.Bar(
|
82 |
y=valid_models["model_name"],
|
83 |
x=valid_models[metric_col],
|
84 |
orientation="h",
|
85 |
marker=dict(color=colors, line=dict(color="black", width=0.5)),
|
86 |
+
error_x=error_x,
|
87 |
text=[f"{score:.3f}" for score in valid_models[metric_col]],
|
88 |
textposition="auto",
|
89 |
hovertemplate=(
|
|
|
109 |
yaxis_title="Models",
|
110 |
height=max(400, len(valid_models) * 35 + 100),
|
111 |
margin=dict(l=20, r=20, t=60, b=20),
|
112 |
+
paper_bgcolor="rgba(0,0,0,0)",
|
113 |
+
plot_bgcolor="rgba(0,0,0,0)",
|
114 |
font=dict(size=12),
|
115 |
)
|
116 |
|
117 |
# Reverse y-axis to show best model at top
|
118 |
fig.update_yaxes(autorange="reversed")
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
return fig
|
121 |
|
122 |
|
123 |
+
def create_language_pair_heatmap(
|
124 |
model_results: Dict, track: str, metric: str = "quality_score"
|
125 |
) -> go.Figure:
|
126 |
+
"""Create language pair heatmap for a model."""
|
127 |
|
128 |
if not model_results or "tracks" not in model_results:
|
129 |
fig = go.Figure()
|
|
|
185 |
width=700,
|
186 |
font=dict(size=12),
|
187 |
xaxis=dict(side="bottom"),
|
188 |
+
yaxis=dict(autorange="reversed"),
|
189 |
+
paper_bgcolor="rgba(0,0,0,0)",
|
190 |
+
plot_bgcolor="rgba(0,0,0,0)",
|
191 |
)
|
192 |
|
193 |
return fig
|
194 |
|
195 |
|
196 |
+
def create_performance_comparison_plot(df: pd.DataFrame, track: str) -> go.Figure:
|
197 |
+
"""Create performance comparison plot showing confidence intervals."""
|
198 |
|
199 |
if df.empty:
|
200 |
fig = go.Figure()
|
|
|
254 |
showlegend=False,
|
255 |
hoverinfo="skip",
|
256 |
))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
# Customize layout
|
259 |
track_info = EVALUATION_TRACKS[track]
|
260 |
fig.update_layout(
|
261 |
+
title=f"📊 {track_info['name']} - Performance Comparison",
|
262 |
xaxis_title="Quality Score",
|
263 |
yaxis_title="Models",
|
264 |
height=max(400, len(valid_models) * 40 + 100),
|
|
|
269 |
autorange="reversed",
|
270 |
),
|
271 |
showlegend=False,
|
272 |
+
paper_bgcolor="rgba(0,0,0,0)",
|
273 |
+
plot_bgcolor="rgba(0,0,0,0)",
|
274 |
)
|
275 |
|
276 |
return fig
|
277 |
|
278 |
|
279 |
+
def create_language_pair_comparison_plot(pairs_df: pd.DataFrame, track: str) -> go.Figure:
|
280 |
+
"""Create language pair comparison plot showing all models across all pairs."""
|
281 |
|
282 |
+
if pairs_df.empty:
|
283 |
fig = go.Figure()
|
284 |
+
fig.add_annotation(
|
285 |
+
text="No language pair data available",
|
286 |
+
x=0.5, y=0.5, showarrow=False
|
287 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
return fig
|
289 |
|
290 |
+
# Get unique language pairs and models
|
291 |
+
language_pairs = sorted(pairs_df['Language Pair'].unique())
|
292 |
+
models = sorted(pairs_df['Model'].unique())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
+
if len(language_pairs) == 0 or len(models) == 0:
|
295 |
fig = go.Figure()
|
296 |
+
fig.add_annotation(
|
297 |
+
text="Insufficient data for comparison",
|
298 |
+
x=0.5, y=0.5, showarrow=False
|
299 |
+
)
|
300 |
return fig
|
301 |
|
302 |
+
# Create subplot for each metric
|
303 |
fig = make_subplots(
|
304 |
+
rows=2, cols=1,
|
305 |
+
subplot_titles=('Quality Score by Language Pair', 'BLEU Score by Language Pair'),
|
306 |
+
vertical_spacing=0.1,
|
307 |
+
shared_xaxes=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
)
|
309 |
|
310 |
+
# Quality Score comparison
|
311 |
+
for model in models:
|
312 |
+
model_data = pairs_df[pairs_df['Model'] == model]
|
313 |
+
category = model_data['Category'].iloc[0] if not model_data.empty else 'community'
|
314 |
+
color = MODEL_CATEGORIES.get(category, {}).get('color', '#808080')
|
315 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
fig.add_trace(
|
317 |
+
go.Bar(
|
318 |
+
name=model,
|
319 |
+
x=model_data['Language Pair'],
|
320 |
+
y=model_data['Quality Score'],
|
321 |
+
marker_color=color,
|
322 |
+
opacity=0.8,
|
323 |
+
legendgroup=model,
|
324 |
+
showlegend=True,
|
325 |
+
hovertemplate=(
|
326 |
+
f"<b>{model}</b><br>" +
|
327 |
+
"Language Pair: %{x}<br>" +
|
328 |
+
"Quality Score: %{y:.4f}<br>" +
|
329 |
+
f"Category: {category}<br>" +
|
330 |
+
"<extra></extra>"
|
331 |
+
)
|
332 |
+
),
|
333 |
row=1, col=1
|
334 |
)
|
335 |
+
|
336 |
+
# BLEU Score comparison
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
fig.add_trace(
|
338 |
+
go.Bar(
|
339 |
+
name=model,
|
340 |
+
x=model_data['Language Pair'],
|
341 |
+
y=model_data['BLEU'],
|
342 |
+
marker_color=color,
|
343 |
+
opacity=0.8,
|
344 |
+
legendgroup=model,
|
345 |
+
showlegend=False,
|
346 |
+
hovertemplate=(
|
347 |
+
f"<b>{model}</b><br>" +
|
348 |
+
"Language Pair: %{x}<br>" +
|
349 |
+
"BLEU: %{y:.2f}<br>" +
|
350 |
+
f"Category: {category}<br>" +
|
351 |
+
"<extra></extra>"
|
352 |
+
)
|
353 |
),
|
354 |
+
row=2, col=1
|
355 |
)
|
356 |
|
357 |
+
# Update layout
|
358 |
+
track_info = EVALUATION_TRACKS[track]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
fig.update_layout(
|
360 |
+
title=f"📊 {track_info['name']} - Language Pair Performance Comparison",
|
361 |
height=800,
|
362 |
+
barmode='group',
|
363 |
+
paper_bgcolor="rgba(0,0,0,0)",
|
364 |
+
plot_bgcolor="rgba(0,0,0,0)",
|
365 |
+
legend=dict(
|
366 |
+
orientation="h",
|
367 |
+
yanchor="bottom",
|
368 |
+
y=1.02,
|
369 |
+
xanchor="right",
|
370 |
+
x=1
|
371 |
+
)
|
372 |
)
|
373 |
|
374 |
+
# Rotate x-axis labels for better readability
|
375 |
+
fig.update_xaxes(tickangle=45, row=2, col=1)
|
376 |
+
fig.update_yaxes(title_text="Quality Score", row=1, col=1)
|
377 |
+
fig.update_yaxes(title_text="BLEU Score", row=2, col=1)
|
378 |
+
|
379 |
return fig
|
380 |
|
381 |
|
382 |
+
def create_category_comparison_plot(df: pd.DataFrame, track: str) -> go.Figure:
|
383 |
+
"""Create category-wise comparison plot."""
|
384 |
|
385 |
if df.empty:
|
386 |
fig = go.Figure()
|
387 |
fig.add_annotation(text="No data available", x=0.5, y=0.5, showarrow=False)
|
388 |
return fig
|
389 |
|
390 |
+
metric_col = f"{track}_quality"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
+
# Filter to models with data
|
393 |
+
valid_models = df[df[metric_col] > 0]
|
|
|
|
|
394 |
|
395 |
+
if valid_models.empty:
|
396 |
fig = go.Figure()
|
397 |
+
fig.add_annotation(text="No valid models found", x=0.5, y=0.5, showarrow=False)
|
398 |
return fig
|
399 |
|
|
|
|
|
|
|
|
|
|
|
400 |
fig = go.Figure()
|
401 |
|
402 |
+
# Create box plot for each category
|
403 |
for category, info in MODEL_CATEGORIES.items():
|
404 |
+
category_models = valid_models[valid_models["model_category"] == category]
|
405 |
|
406 |
if len(category_models) > 0:
|
407 |
+
fig.add_trace(go.Box(
|
408 |
+
y=category_models[metric_col],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
name=info["name"],
|
410 |
+
marker_color=info["color"],
|
411 |
+
boxpoints="all", # Show all points
|
412 |
+
jitter=0.3,
|
413 |
+
pointpos=-1.8,
|
414 |
hovertemplate=(
|
415 |
+
f"<b>{info['name']}</b><br>" +
|
416 |
+
"Quality: %{y:.4f}<br>" +
|
417 |
+
"Model: %{customdata}<br>" +
|
|
|
418 |
"<extra></extra>"
|
419 |
),
|
420 |
+
customdata=category_models["model_name"],
|
421 |
))
|
422 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
423 |
# Customize layout
|
424 |
track_info = EVALUATION_TRACKS[track]
|
425 |
fig.update_layout(
|
426 |
+
title=f"📈 {track_info['name']} - Performance by Category",
|
427 |
+
xaxis_title="Model Category",
|
428 |
+
yaxis_title="Quality Score",
|
429 |
+
height=500,
|
430 |
showlegend=False,
|
431 |
+
paper_bgcolor="rgba(0,0,0,0)",
|
432 |
+
plot_bgcolor="rgba(0,0,0,0)",
|
433 |
)
|
434 |
|
|
|
|
|
|
|
|
|
435 |
return fig
|