Spaces:
Sleeping
Sleeping
Update src/utils.py
Browse files- src/utils.py +151 -448
src/utils.py
CHANGED
@@ -4,16 +4,13 @@ import datetime
|
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
from typing import Dict, List, Tuple, Set, Optional, Union
|
7 |
-
from scipy import stats
|
8 |
from config import (
|
9 |
ALL_UG40_LANGUAGES,
|
10 |
GOOGLE_SUPPORTED_LANGUAGES,
|
11 |
LANGUAGE_NAMES,
|
12 |
EVALUATION_TRACKS,
|
13 |
MODEL_CATEGORIES,
|
14 |
-
STATISTICAL_CONFIG,
|
15 |
METRICS_CONFIG,
|
16 |
-
SAMPLE_SIZE_RECOMMENDATIONS,
|
17 |
)
|
18 |
|
19 |
|
@@ -71,7 +68,7 @@ def create_submission_id() -> str:
|
|
71 |
|
72 |
|
73 |
def sanitize_model_name(name: str) -> str:
|
74 |
-
"""Sanitize model name for display and storage
|
75 |
if not name or not isinstance(name, str):
|
76 |
return "Anonymous_Model"
|
77 |
|
@@ -94,241 +91,87 @@ def sanitize_model_name(name: str) -> str:
|
|
94 |
return name[:50] # Limit to 50 characters
|
95 |
|
96 |
|
97 |
-
def format_metric_value(value: float, metric: str,
|
98 |
-
|
99 |
-
"""Format metric value for display with optional confidence intervals."""
|
100 |
if pd.isna(value) or value is None:
|
101 |
return "N/A"
|
102 |
|
103 |
try:
|
104 |
-
precision
|
|
|
105 |
|
106 |
if metric == "coverage_rate":
|
107 |
-
|
108 |
elif metric in ["bleu"]:
|
109 |
-
|
110 |
elif metric in ["cer", "wer"] and value > 1:
|
111 |
# Cap error rates at 1.0 for display
|
112 |
-
|
113 |
else:
|
114 |
-
|
115 |
-
|
116 |
-
# Add confidence interval if requested
|
117 |
-
if include_ci and ci_lower is not None and ci_upper is not None:
|
118 |
-
ci_str = f" [{ci_lower:.{precision}f}, {ci_upper:.{precision}f}]"
|
119 |
-
formatted += ci_str
|
120 |
-
|
121 |
-
return formatted
|
122 |
|
123 |
except (ValueError, TypeError):
|
124 |
return str(value)
|
125 |
|
126 |
|
127 |
-
def
|
128 |
-
"""
|
129 |
-
if len(values1) < 2 or len(values2) < 2:
|
130 |
-
return 0.0
|
131 |
-
|
132 |
try:
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
return 0.0
|
142 |
-
|
143 |
-
# Calculate pooled standard deviation
|
144 |
-
n1, n2 = len(values1), len(values2)
|
145 |
-
pooled_std = np.sqrt(
|
146 |
-
((n1 - 1) * np.var(values1, ddof=1) + (n2 - 1) * np.var(values2, ddof=1))
|
147 |
-
/ (n1 + n2 - 2)
|
148 |
-
)
|
149 |
-
|
150 |
-
if pooled_std == 0:
|
151 |
-
return 0.0
|
152 |
-
|
153 |
-
# Cohen's d
|
154 |
-
effect_size = (np.mean(values1) - np.mean(values2)) / pooled_std
|
155 |
-
return abs(effect_size)
|
156 |
-
|
157 |
-
except Exception:
|
158 |
-
return 0.0
|
159 |
|
160 |
|
161 |
-
def
|
162 |
-
"""
|
163 |
-
|
|
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
elif effect_size < thresholds["medium"]:
|
168 |
-
return "small"
|
169 |
-
elif effect_size < thresholds["large"]:
|
170 |
-
return "medium"
|
171 |
-
else:
|
172 |
-
return "large"
|
173 |
-
|
174 |
-
|
175 |
-
def calculate_statistical_power(
|
176 |
-
effect_size: float, n1: int, n2: int, alpha: float = 0.05
|
177 |
-
) -> float:
|
178 |
-
"""Estimate statistical power for given effect size and sample sizes."""
|
179 |
-
if n1 < 2 or n2 < 2:
|
180 |
-
return 0.0
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
t_critical = stats.t.ppf(1 - alpha/2, df)
|
190 |
-
|
191 |
-
# Non-centrality parameter
|
192 |
-
ncp = effect_size / pooled_se
|
193 |
-
|
194 |
-
# Power (approximate)
|
195 |
-
power = 1 - stats.t.cdf(t_critical, df, loc=ncp) + stats.t.cdf(-t_critical, df, loc=ncp)
|
196 |
-
|
197 |
-
return min(1.0, max(0.0, power))
|
198 |
-
|
199 |
-
except Exception:
|
200 |
-
return 0.0
|
201 |
|
202 |
|
203 |
-
def
|
204 |
-
|
205 |
-
|
|
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
# Filter test data to track languages
|
211 |
-
track_data = test_data[
|
212 |
-
(test_data["source_language"].isin(track_languages)) &
|
213 |
-
(test_data["target_language"].isin(track_languages))
|
214 |
-
]
|
215 |
-
|
216 |
-
if track_data.empty:
|
217 |
-
track_stats[track_name] = {
|
218 |
-
"total_samples": 0,
|
219 |
-
"language_pairs": 0,
|
220 |
-
"samples_per_pair": {},
|
221 |
-
"coverage_matrix": {},
|
222 |
-
"adequacy_assessment": "insufficient",
|
223 |
-
}
|
224 |
-
continue
|
225 |
-
|
226 |
-
# Calculate pair-wise statistics
|
227 |
-
pair_counts = {}
|
228 |
-
for src in track_languages:
|
229 |
-
for tgt in track_languages:
|
230 |
-
if src == tgt:
|
231 |
-
continue
|
232 |
-
|
233 |
-
pair_data = track_data[
|
234 |
-
(track_data["source_language"] == src) &
|
235 |
-
(track_data["target_language"] == tgt)
|
236 |
-
]
|
237 |
-
|
238 |
-
pair_key = f"{src}_to_{tgt}"
|
239 |
-
pair_counts[pair_key] = len(pair_data)
|
240 |
-
|
241 |
-
# Calculate adequacy
|
242 |
-
min_required = track_config["min_samples_per_pair"]
|
243 |
-
adequate_pairs = sum(1 for count in pair_counts.values() if count >= min_required)
|
244 |
-
total_possible_pairs = len(track_languages) * (len(track_languages) - 1)
|
245 |
-
|
246 |
-
adequacy_rate = adequate_pairs / max(total_possible_pairs, 1)
|
247 |
-
|
248 |
-
if adequacy_rate >= 0.8:
|
249 |
-
adequacy = "excellent"
|
250 |
-
elif adequacy_rate >= 0.6:
|
251 |
-
adequacy = "good"
|
252 |
-
elif adequacy_rate >= 0.4:
|
253 |
-
adequacy = "fair"
|
254 |
-
else:
|
255 |
-
adequacy = "insufficient"
|
256 |
-
|
257 |
-
track_stats[track_name] = {
|
258 |
-
"total_samples": len(track_data),
|
259 |
-
"language_pairs": len([k for k, v in pair_counts.items() if v > 0]),
|
260 |
-
"samples_per_pair": pair_counts,
|
261 |
-
"coverage_matrix": pair_counts,
|
262 |
-
"adequacy_assessment": adequacy,
|
263 |
-
"adequacy_rate": adequacy_rate,
|
264 |
-
"min_samples_per_pair": min_required,
|
265 |
-
}
|
266 |
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
def validate_submission_completeness_scientific(
|
271 |
-
predictions: pd.DataFrame, test_set: pd.DataFrame, track: str = None
|
272 |
-
) -> Dict:
|
273 |
-
"""Enhanced validation with track-specific analysis."""
|
274 |
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
"extra_count": len(predictions) if not predictions.empty else 0,
|
280 |
-
"missing_ids": [],
|
281 |
-
"coverage": 0.0,
|
282 |
-
"track_analysis": {},
|
283 |
-
}
|
284 |
|
285 |
-
#
|
286 |
-
if
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
|
293 |
-
|
294 |
-
required_ids = set(test_set["sample_id"].astype(str))
|
295 |
-
provided_ids = set(predictions["sample_id"].astype(str))
|
296 |
-
|
297 |
-
missing_ids = required_ids - provided_ids
|
298 |
-
extra_ids = provided_ids - required_ids
|
299 |
-
matching_ids = provided_ids & required_ids
|
300 |
-
|
301 |
-
base_result = {
|
302 |
-
"is_complete": len(missing_ids) == 0,
|
303 |
-
"missing_count": len(missing_ids),
|
304 |
-
"extra_count": len(extra_ids),
|
305 |
-
"missing_ids": list(missing_ids)[:10],
|
306 |
-
"coverage": len(matching_ids) / len(required_ids) if required_ids else 0.0,
|
307 |
-
}
|
308 |
-
|
309 |
-
# Add track-specific analysis if requested
|
310 |
-
if track:
|
311 |
-
track_analysis = analyze_track_coverage(predictions, test_set, track)
|
312 |
-
base_result["track_analysis"] = track_analysis
|
313 |
-
|
314 |
-
return base_result
|
315 |
-
|
316 |
-
except Exception as e:
|
317 |
-
print(f"Error in submission completeness validation: {e}")
|
318 |
-
return {
|
319 |
-
"is_complete": False,
|
320 |
-
"missing_count": 0,
|
321 |
-
"extra_count": 0,
|
322 |
-
"missing_ids": [],
|
323 |
-
"coverage": 0.0,
|
324 |
-
"track_analysis": {},
|
325 |
-
}
|
326 |
|
327 |
|
328 |
-
def
|
329 |
-
|
330 |
-
) -> Dict:
|
331 |
-
"""Analyze coverage for a specific track."""
|
332 |
|
333 |
if track not in EVALUATION_TRACKS:
|
334 |
return {"error": f"Unknown track: {track}"}
|
@@ -345,8 +188,12 @@ def analyze_track_coverage(
|
|
345 |
if track_test_set.empty:
|
346 |
return {"error": f"No test data available for {track} track"}
|
347 |
|
348 |
-
#
|
349 |
-
|
|
|
|
|
|
|
|
|
350 |
|
351 |
# Analyze by language pair
|
352 |
pair_analysis = {}
|
@@ -355,122 +202,119 @@ def analyze_track_coverage(
|
|
355 |
if src == tgt:
|
356 |
continue
|
357 |
|
358 |
-
|
359 |
-
(
|
360 |
-
(
|
361 |
]
|
362 |
|
363 |
-
if len(
|
364 |
-
|
|
|
|
|
365 |
pair_analysis[f"{src}_to_{tgt}"] = {
|
366 |
-
"total": len(
|
367 |
-
"covered":
|
368 |
-
"coverage_rate":
|
369 |
-
"meets_minimum": covered >= track_config["min_samples_per_pair"],
|
370 |
}
|
371 |
|
372 |
-
# Overall track statistics
|
373 |
-
total_pairs = len(pair_analysis)
|
374 |
-
adequate_pairs = sum(1 for info in pair_analysis.values() if info["meets_minimum"])
|
375 |
-
|
376 |
return {
|
377 |
"track_name": track_config["name"],
|
378 |
-
"
|
379 |
-
"
|
380 |
-
"
|
381 |
"pair_analysis": pair_analysis,
|
382 |
-
"overall_adequate": adequate_pairs >= total_pairs * 0.8, # 80% of pairs adequate
|
383 |
}
|
384 |
|
385 |
|
386 |
-
def
|
387 |
-
|
388 |
-
|
389 |
-
"""
|
390 |
-
|
391 |
-
|
392 |
-
return {}
|
393 |
|
394 |
-
|
395 |
-
# Merge to get language info
|
396 |
-
merged = test_set.merge(predictions, on="sample_id", how="left", suffixes=("", "_pred"))
|
397 |
-
|
398 |
-
coverage = {}
|
399 |
-
for src in ALL_UG40_LANGUAGES:
|
400 |
-
for tgt in ALL_UG40_LANGUAGES:
|
401 |
-
if src == tgt:
|
402 |
-
continue
|
403 |
-
|
404 |
-
pair_data = merged[
|
405 |
-
(merged["source_language"] == src) &
|
406 |
-
(merged["target_language"] == tgt)
|
407 |
-
]
|
408 |
-
|
409 |
-
if len(pair_data) > 0:
|
410 |
-
predicted_count = pair_data["prediction"].notna().sum()
|
411 |
-
coverage_rate = predicted_count / len(pair_data)
|
412 |
-
|
413 |
-
# Determine which tracks include this pair
|
414 |
-
tracks_included = []
|
415 |
-
for track_name, track_config in EVALUATION_TRACKS.items():
|
416 |
-
if src in track_config["languages"] and tgt in track_config["languages"]:
|
417 |
-
tracks_included.append(track_name)
|
418 |
-
|
419 |
-
coverage[f"{src}_{tgt}"] = {
|
420 |
-
"total": len(pair_data),
|
421 |
-
"predicted": predicted_count,
|
422 |
-
"coverage": coverage_rate,
|
423 |
-
"display_name": format_language_pair(src, tgt),
|
424 |
-
"tracks_included": tracks_included,
|
425 |
-
"google_comparable": (
|
426 |
-
src in GOOGLE_SUPPORTED_LANGUAGES and
|
427 |
-
tgt in GOOGLE_SUPPORTED_LANGUAGES
|
428 |
-
),
|
429 |
-
"statistical_adequacy": {
|
430 |
-
track: predicted_count >= EVALUATION_TRACKS[track]["min_samples_per_pair"]
|
431 |
-
for track in tracks_included
|
432 |
-
},
|
433 |
-
}
|
434 |
-
|
435 |
-
return coverage
|
436 |
-
|
437 |
-
except Exception as e:
|
438 |
-
print(f"Error calculating language pair coverage: {e}")
|
439 |
-
return {}
|
440 |
|
441 |
|
442 |
-
def
|
443 |
-
"""
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
return float(result)
|
451 |
-
except (TypeError, ValueError, ZeroDivisionError):
|
452 |
-
return default
|
453 |
|
454 |
|
455 |
-
def
|
456 |
-
"""
|
457 |
if not isinstance(text, str):
|
458 |
-
|
459 |
|
460 |
-
|
461 |
-
|
462 |
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
|
469 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
470 |
|
471 |
|
472 |
-
def
|
473 |
-
"""Extract
|
474 |
|
475 |
if not model_results or "tracks" not in model_results:
|
476 |
return {}
|
@@ -484,7 +328,6 @@ def get_model_summary_stats_scientific(model_results: Dict, track: str = None) -
|
|
484 |
return {"error": f"No valid data for {track} track"}
|
485 |
|
486 |
track_averages = track_data.get("track_averages", {})
|
487 |
-
track_statistics = track_data.get("track_statistics", {})
|
488 |
summary = track_data.get("summary", {})
|
489 |
|
490 |
stats = {
|
@@ -495,17 +338,8 @@ def get_model_summary_stats_scientific(model_results: Dict, track: str = None) -
|
|
495 |
"chrf": track_averages.get("chrf", 0.0),
|
496 |
"total_samples": summary.get("total_samples", 0),
|
497 |
"language_pairs": summary.get("language_pairs_evaluated", 0),
|
498 |
-
"statistical_adequacy": summary.get("total_samples", 0) >= 100, # Simple threshold
|
499 |
}
|
500 |
|
501 |
-
# Add confidence intervals if available
|
502 |
-
if "quality_score" in track_statistics:
|
503 |
-
quality_stats = track_statistics["quality_score"]
|
504 |
-
stats["confidence_interval"] = [
|
505 |
-
quality_stats.get("ci_lower", 0.0),
|
506 |
-
quality_stats.get("ci_upper", 0.0),
|
507 |
-
]
|
508 |
-
|
509 |
return stats
|
510 |
|
511 |
# Otherwise, return summary across all tracks
|
@@ -526,135 +360,4 @@ def get_model_summary_stats_scientific(model_results: Dict, track: str = None) -
|
|
526 |
"pairs": summary.get("language_pairs_evaluated", 0),
|
527 |
}
|
528 |
|
529 |
-
return all_tracks_summary
|
530 |
-
|
531 |
-
|
532 |
-
def generate_model_identifier_scientific(
|
533 |
-
model_name: str, author: str, category: str
|
534 |
-
) -> str:
|
535 |
-
"""Generate a unique scientific identifier for a model."""
|
536 |
-
clean_name = sanitize_model_name(model_name)
|
537 |
-
clean_author = re.sub(r"[^\w\-]", "_", author.strip())[:20] if author else "Anonymous"
|
538 |
-
clean_category = category[:10] if category in MODEL_CATEGORIES else "community"
|
539 |
-
timestamp = datetime.datetime.now().strftime("%m%d_%H%M")
|
540 |
-
|
541 |
-
return f"{clean_category}_{clean_name}_{clean_author}_{timestamp}"
|
542 |
-
|
543 |
-
|
544 |
-
def validate_dataframe_structure_enhanced(
|
545 |
-
df: pd.DataFrame, required_columns: List[str], track: str = None
|
546 |
-
) -> Tuple[bool, List[str]]:
|
547 |
-
"""Enhanced DataFrame structure validation with track-specific checks."""
|
548 |
-
|
549 |
-
if df.empty:
|
550 |
-
return False, ["DataFrame is empty"]
|
551 |
-
|
552 |
-
issues = []
|
553 |
-
|
554 |
-
# Check required columns
|
555 |
-
missing_columns = [col for col in required_columns if col not in df.columns]
|
556 |
-
if missing_columns:
|
557 |
-
issues.append(f"Missing columns: {', '.join(missing_columns)}")
|
558 |
-
|
559 |
-
# Check for track-specific requirements
|
560 |
-
if track and track in EVALUATION_TRACKS:
|
561 |
-
track_config = EVALUATION_TRACKS[track]
|
562 |
-
min_samples = track_config.get("min_samples_per_pair", 10)
|
563 |
-
|
564 |
-
# Check sample size adequacy
|
565 |
-
if len(df) < min_samples * 5: # At least 5 pairs worth of data
|
566 |
-
issues.append(f"Insufficient samples for {track} track (minimum ~{min_samples * 5})")
|
567 |
-
|
568 |
-
# Check data types
|
569 |
-
if "sample_id" in df.columns:
|
570 |
-
if not df["sample_id"].dtype == "object":
|
571 |
-
try:
|
572 |
-
df["sample_id"] = df["sample_id"].astype(str)
|
573 |
-
except Exception:
|
574 |
-
issues.append("Cannot convert sample_id to string")
|
575 |
-
|
576 |
-
return len(issues) == 0, issues
|
577 |
-
|
578 |
-
|
579 |
-
def format_duration(seconds: float) -> str:
|
580 |
-
"""Format duration in seconds to human-readable format."""
|
581 |
-
if seconds < 60:
|
582 |
-
return f"{seconds:.1f}s"
|
583 |
-
elif seconds < 3600:
|
584 |
-
return f"{seconds/60:.1f}m"
|
585 |
-
else:
|
586 |
-
return f"{seconds/3600:.1f}h"
|
587 |
-
|
588 |
-
|
589 |
-
def truncate_text(text: str, max_length: int = 100, suffix: str = "...") -> str:
|
590 |
-
"""Truncate text to specified length with suffix."""
|
591 |
-
if not isinstance(text, str):
|
592 |
-
text = str(text)
|
593 |
-
|
594 |
-
if len(text) <= max_length:
|
595 |
-
return text
|
596 |
-
|
597 |
-
return text[: max_length - len(suffix)] + suffix
|
598 |
-
|
599 |
-
|
600 |
-
def calculate_sample_size_recommendation(
|
601 |
-
desired_power: float = 0.8, effect_size: float = 0.5, alpha: float = 0.05
|
602 |
-
) -> int:
|
603 |
-
"""Calculate recommended sample size for statistical analysis."""
|
604 |
-
|
605 |
-
try:
|
606 |
-
# Simplified sample size calculation for t-test
|
607 |
-
# This is an approximation using Cohen's conventions
|
608 |
-
|
609 |
-
z_alpha = stats.norm.ppf(1 - alpha / 2)
|
610 |
-
z_beta = stats.norm.ppf(desired_power)
|
611 |
-
|
612 |
-
# Sample size per group
|
613 |
-
n_per_group = 2 * ((z_alpha + z_beta) / effect_size) ** 2
|
614 |
-
|
615 |
-
# Round up to nearest integer
|
616 |
-
return max(10, int(np.ceil(n_per_group)))
|
617 |
-
|
618 |
-
except Exception:
|
619 |
-
return 50 # Default fallback
|
620 |
-
|
621 |
-
|
622 |
-
def assess_model_category_appropriateness(
|
623 |
-
model_name: str, category: str, performance_data: Dict
|
624 |
-
) -> Dict:
|
625 |
-
"""Assess if the detected/assigned model category is appropriate."""
|
626 |
-
|
627 |
-
assessment = {
|
628 |
-
"category": category,
|
629 |
-
"appropriate": True,
|
630 |
-
"confidence": 1.0,
|
631 |
-
"recommendations": [],
|
632 |
-
}
|
633 |
-
|
634 |
-
# Check for category mismatches based on performance
|
635 |
-
if category == "baseline" and performance_data:
|
636 |
-
# Baselines shouldn't perform too well
|
637 |
-
quality_scores = []
|
638 |
-
for track_data in performance_data.get("tracks", {}).values():
|
639 |
-
if not track_data.get("error"):
|
640 |
-
quality_scores.append(track_data.get("track_averages", {}).get("quality_score", 0))
|
641 |
-
|
642 |
-
if quality_scores and max(quality_scores) > 0.7: # High performance for baseline
|
643 |
-
assessment["appropriate"] = False
|
644 |
-
assessment["confidence"] = 0.3
|
645 |
-
assessment["recommendations"].append(
|
646 |
-
"High performance suggests this might not be a baseline model"
|
647 |
-
)
|
648 |
-
|
649 |
-
# Check for commercial model expectations
|
650 |
-
if category == "commercial":
|
651 |
-
# Commercial models should have good Google-comparable performance
|
652 |
-
google_track = performance_data.get("tracks", {}).get("google_comparable", {})
|
653 |
-
if not google_track.get("error"):
|
654 |
-
quality = google_track.get("track_averages", {}).get("quality_score", 0)
|
655 |
-
if quality < 0.3: # Poor performance for commercial
|
656 |
-
assessment["recommendations"].append(
|
657 |
-
"Low performance unexpected for commercial systems"
|
658 |
-
)
|
659 |
-
|
660 |
-
return assessment
|
|
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
from typing import Dict, List, Tuple, Set, Optional, Union
|
|
|
7 |
from config import (
|
8 |
ALL_UG40_LANGUAGES,
|
9 |
GOOGLE_SUPPORTED_LANGUAGES,
|
10 |
LANGUAGE_NAMES,
|
11 |
EVALUATION_TRACKS,
|
12 |
MODEL_CATEGORIES,
|
|
|
13 |
METRICS_CONFIG,
|
|
|
14 |
)
|
15 |
|
16 |
|
|
|
68 |
|
69 |
|
70 |
def sanitize_model_name(name: str) -> str:
|
71 |
+
"""Sanitize model name for display and storage."""
|
72 |
if not name or not isinstance(name, str):
|
73 |
return "Anonymous_Model"
|
74 |
|
|
|
91 |
return name[:50] # Limit to 50 characters
|
92 |
|
93 |
|
94 |
+
def format_metric_value(value: float, metric: str, precision: int = None) -> str:
|
95 |
+
"""Format metric value for display."""
|
|
|
96 |
if pd.isna(value) or value is None:
|
97 |
return "N/A"
|
98 |
|
99 |
try:
|
100 |
+
if precision is None:
|
101 |
+
precision = METRICS_CONFIG["display_precision"]
|
102 |
|
103 |
if metric == "coverage_rate":
|
104 |
+
return f"{value:.1%}"
|
105 |
elif metric in ["bleu"]:
|
106 |
+
return f"{value:.2f}"
|
107 |
elif metric in ["cer", "wer"] and value > 1:
|
108 |
# Cap error rates at 1.0 for display
|
109 |
+
return f"{min(value, 1.0):.{precision}f}"
|
110 |
else:
|
111 |
+
return f"{value:.{precision}f}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
except (ValueError, TypeError):
|
114 |
return str(value)
|
115 |
|
116 |
|
117 |
+
def safe_divide(numerator: float, denominator: float, default: float = 0.0) -> float:
|
118 |
+
"""Safely divide two numbers, handling edge cases."""
|
|
|
|
|
|
|
119 |
try:
|
120 |
+
if denominator == 0 or pd.isna(denominator) or pd.isna(numerator):
|
121 |
+
return default
|
122 |
+
result = numerator / denominator
|
123 |
+
if pd.isna(result) or not np.isfinite(result):
|
124 |
+
return default
|
125 |
+
return float(result)
|
126 |
+
except (TypeError, ValueError, ZeroDivisionError):
|
127 |
+
return default
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
|
130 |
+
def clean_text_for_evaluation(text: str) -> str:
|
131 |
+
"""Clean text for evaluation, handling common encoding issues."""
|
132 |
+
if not isinstance(text, str):
|
133 |
+
return str(text) if text is not None else ""
|
134 |
|
135 |
+
# Remove extra whitespace
|
136 |
+
text = re.sub(r"\s+", " ", text.strip())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
# Handle common encoding issues
|
139 |
+
text = text.replace("\u00a0", " ") # Non-breaking space
|
140 |
+
text = text.replace("\u2019", "'") # Right single quotation mark
|
141 |
+
text = text.replace("\u201c", '"') # Left double quotation mark
|
142 |
+
text = text.replace("\u201d", '"') # Right double quotation mark
|
143 |
+
|
144 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
|
147 |
+
def validate_dataframe_structure(
|
148 |
+
df: pd.DataFrame, required_columns: List[str], track: str = None
|
149 |
+
) -> Tuple[bool, List[str]]:
|
150 |
+
"""Validate DataFrame structure."""
|
151 |
|
152 |
+
if df.empty:
|
153 |
+
return False, ["DataFrame is empty"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
issues = []
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
# Check required columns
|
158 |
+
missing_columns = [col for col in required_columns if col not in df.columns]
|
159 |
+
if missing_columns:
|
160 |
+
issues.append(f"Missing columns: {', '.join(missing_columns)}")
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
+
# Check data types
|
163 |
+
if "sample_id" in df.columns:
|
164 |
+
if not df["sample_id"].dtype == "object":
|
165 |
+
try:
|
166 |
+
df["sample_id"] = df["sample_id"].astype(str)
|
167 |
+
except Exception:
|
168 |
+
issues.append("Cannot convert sample_id to string")
|
169 |
|
170 |
+
return len(issues) == 0, issues
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
|
173 |
+
def calculate_track_coverage(predictions: pd.DataFrame, test_set: pd.DataFrame, track: str) -> Dict:
|
174 |
+
"""Calculate coverage statistics for a specific track."""
|
|
|
|
|
175 |
|
176 |
if track not in EVALUATION_TRACKS:
|
177 |
return {"error": f"Unknown track: {track}"}
|
|
|
188 |
if track_test_set.empty:
|
189 |
return {"error": f"No test data available for {track} track"}
|
190 |
|
191 |
+
# Calculate coverage
|
192 |
+
pred_ids = set(predictions["sample_id"].astype(str))
|
193 |
+
test_ids = set(track_test_set["sample_id"].astype(str))
|
194 |
+
|
195 |
+
matching_ids = pred_ids & test_ids
|
196 |
+
coverage_rate = len(matching_ids) / len(test_ids)
|
197 |
|
198 |
# Analyze by language pair
|
199 |
pair_analysis = {}
|
|
|
202 |
if src == tgt:
|
203 |
continue
|
204 |
|
205 |
+
pair_test_data = track_test_set[
|
206 |
+
(track_test_set["source_language"] == src) &
|
207 |
+
(track_test_set["target_language"] == tgt)
|
208 |
]
|
209 |
|
210 |
+
if len(pair_test_data) > 0:
|
211 |
+
pair_test_ids = set(pair_test_data["sample_id"].astype(str))
|
212 |
+
pair_matching = pred_ids & pair_test_ids
|
213 |
+
|
214 |
pair_analysis[f"{src}_to_{tgt}"] = {
|
215 |
+
"total": len(pair_test_data),
|
216 |
+
"covered": len(pair_matching),
|
217 |
+
"coverage_rate": len(pair_matching) / len(pair_test_data),
|
|
|
218 |
}
|
219 |
|
|
|
|
|
|
|
|
|
220 |
return {
|
221 |
"track_name": track_config["name"],
|
222 |
+
"total_samples": len(track_test_set),
|
223 |
+
"covered_samples": len(matching_ids),
|
224 |
+
"coverage_rate": coverage_rate,
|
225 |
"pair_analysis": pair_analysis,
|
|
|
226 |
}
|
227 |
|
228 |
|
229 |
+
def generate_model_identifier(model_name: str, author: str, category: str) -> str:
|
230 |
+
"""Generate a unique identifier for a model."""
|
231 |
+
clean_name = sanitize_model_name(model_name)
|
232 |
+
clean_author = re.sub(r"[^\w\-]", "_", author.strip())[:20] if author else "Anonymous"
|
233 |
+
clean_category = category[:10] if category in MODEL_CATEGORIES else "community"
|
234 |
+
timestamp = datetime.datetime.now().strftime("%m%d_%H%M")
|
|
|
235 |
|
236 |
+
return f"{clean_category}_{clean_name}_{clean_author}_{timestamp}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
|
239 |
+
def format_duration(seconds: float) -> str:
|
240 |
+
"""Format duration in seconds to human-readable format."""
|
241 |
+
if seconds < 60:
|
242 |
+
return f"{seconds:.1f}s"
|
243 |
+
elif seconds < 3600:
|
244 |
+
return f"{seconds/60:.1f}m"
|
245 |
+
else:
|
246 |
+
return f"{seconds/3600:.1f}h"
|
|
|
|
|
|
|
247 |
|
248 |
|
249 |
+
def truncate_text(text: str, max_length: int = 100, suffix: str = "...") -> str:
|
250 |
+
"""Truncate text to specified length with suffix."""
|
251 |
if not isinstance(text, str):
|
252 |
+
text = str(text)
|
253 |
|
254 |
+
if len(text) <= max_length:
|
255 |
+
return text
|
256 |
|
257 |
+
return text[: max_length - len(suffix)] + suffix
|
258 |
+
|
259 |
+
|
260 |
+
def get_language_pair_display_name(src: str, tgt: str) -> str:
|
261 |
+
"""Get display name for a language pair."""
|
262 |
+
src_name = LANGUAGE_NAMES.get(src, src.upper())
|
263 |
+
tgt_name = LANGUAGE_NAMES.get(tgt, tgt.upper())
|
264 |
+
return f"{src_name} → {tgt_name}"
|
265 |
+
|
266 |
+
|
267 |
+
def validate_submission_completeness(
|
268 |
+
predictions: pd.DataFrame, test_set: pd.DataFrame, track: str = None
|
269 |
+
) -> Dict:
|
270 |
+
"""Validate submission completeness."""
|
271 |
|
272 |
+
if predictions.empty or test_set.empty:
|
273 |
+
return {
|
274 |
+
"is_complete": False,
|
275 |
+
"missing_count": len(test_set) if not test_set.empty else 0,
|
276 |
+
"extra_count": len(predictions) if not predictions.empty else 0,
|
277 |
+
"missing_ids": [],
|
278 |
+
"coverage": 0.0,
|
279 |
+
}
|
280 |
+
|
281 |
+
# If track specified, filter to track languages
|
282 |
+
if track and track in EVALUATION_TRACKS:
|
283 |
+
track_languages = EVALUATION_TRACKS[track]["languages"]
|
284 |
+
test_set = test_set[
|
285 |
+
(test_set["source_language"].isin(track_languages)) &
|
286 |
+
(test_set["target_language"].isin(track_languages))
|
287 |
+
]
|
288 |
+
|
289 |
+
try:
|
290 |
+
required_ids = set(test_set["sample_id"].astype(str))
|
291 |
+
provided_ids = set(predictions["sample_id"].astype(str))
|
292 |
+
|
293 |
+
missing_ids = required_ids - provided_ids
|
294 |
+
extra_ids = provided_ids - required_ids
|
295 |
+
matching_ids = provided_ids & required_ids
|
296 |
+
|
297 |
+
return {
|
298 |
+
"is_complete": len(missing_ids) == 0,
|
299 |
+
"missing_count": len(missing_ids),
|
300 |
+
"extra_count": len(extra_ids),
|
301 |
+
"missing_ids": list(missing_ids)[:10],
|
302 |
+
"coverage": len(matching_ids) / len(required_ids) if required_ids else 0.0,
|
303 |
+
}
|
304 |
+
|
305 |
+
except Exception as e:
|
306 |
+
print(f"Error in submission completeness validation: {e}")
|
307 |
+
return {
|
308 |
+
"is_complete": False,
|
309 |
+
"missing_count": 0,
|
310 |
+
"extra_count": 0,
|
311 |
+
"missing_ids": [],
|
312 |
+
"coverage": 0.0,
|
313 |
+
}
|
314 |
|
315 |
|
316 |
+
def get_model_summary_stats(model_results: Dict, track: str = None) -> Dict:
|
317 |
+
"""Extract summary statistics from model evaluation results."""
|
318 |
|
319 |
if not model_results or "tracks" not in model_results:
|
320 |
return {}
|
|
|
328 |
return {"error": f"No valid data for {track} track"}
|
329 |
|
330 |
track_averages = track_data.get("track_averages", {})
|
|
|
331 |
summary = track_data.get("summary", {})
|
332 |
|
333 |
stats = {
|
|
|
338 |
"chrf": track_averages.get("chrf", 0.0),
|
339 |
"total_samples": summary.get("total_samples", 0),
|
340 |
"language_pairs": summary.get("language_pairs_evaluated", 0),
|
|
|
341 |
}
|
342 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
return stats
|
344 |
|
345 |
# Otherwise, return summary across all tracks
|
|
|
360 |
"pairs": summary.get("language_pairs_evaluated", 0),
|
361 |
}
|
362 |
|
363 |
+
return all_tracks_summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|