Spaces:
Sleeping
Sleeping
Update src/test_set.py
Browse files- src/test_set.py +219 -106
src/test_set.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
import yaml
|
@@ -18,84 +19,138 @@ from src.utils import get_all_language_pairs
|
|
18 |
LOCAL_PUBLIC_CSV = "salt_test_set.csv"
|
19 |
LOCAL_COMPLETE_CSV = "salt_complete_test_set.csv"
|
20 |
|
21 |
-
|
22 |
def generate_test_set(max_samples_per_pair: int = MAX_TEST_SAMPLES) -> pd.DataFrame:
|
23 |
"""
|
24 |
Generate standardized test set from the SALT dataset.
|
25 |
"""
|
26 |
print("🔄 Generating SALT test set from source dataset...")
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
def _generate_and_save_test_set() ->
|
83 |
"""
|
84 |
Generate the full test set and persist both public and complete CSV files.
|
85 |
"""
|
|
|
|
|
86 |
full_df = generate_test_set()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
# Public version (no target_text)
|
88 |
public_df = full_df[[
|
89 |
'sample_id', 'source_text', 'source_language',
|
90 |
'target_language', 'domain', 'google_comparable'
|
91 |
-
]]
|
92 |
-
|
93 |
-
#
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
96 |
return public_df, full_df
|
97 |
|
98 |
-
|
99 |
def get_public_test_set() -> pd.DataFrame:
|
100 |
"""
|
101 |
Load the public test set (without targets).
|
@@ -103,28 +158,33 @@ def get_public_test_set() -> pd.DataFrame:
|
|
103 |
"""
|
104 |
# 1) Try HF Hub
|
105 |
try:
|
|
|
106 |
ds = load_dataset(TEST_SET_DATASET, split="train", token=HF_TOKEN)
|
107 |
df = ds.to_pandas()
|
108 |
print(f"✅ Loaded public test set from HF Hub ({len(df):,} samples)")
|
109 |
return df
|
110 |
except Exception as e:
|
111 |
-
print("⚠️
|
112 |
|
113 |
# 2) Try local CSV
|
114 |
if os.path.exists(LOCAL_PUBLIC_CSV):
|
115 |
try:
|
116 |
df = pd.read_csv(LOCAL_PUBLIC_CSV)
|
117 |
print(f"✅ Loaded public test set from local CSV ({len(df):,} samples)")
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
119 |
except Exception as e:
|
120 |
-
print("⚠️
|
121 |
|
122 |
# 3) Regenerate & save
|
123 |
-
print("🔄 Generating new public test set
|
124 |
public_df, _ = _generate_and_save_test_set()
|
125 |
return public_df
|
126 |
|
127 |
-
|
128 |
def get_complete_test_set() -> pd.DataFrame:
|
129 |
"""
|
130 |
Load the complete test set (with targets).
|
@@ -132,75 +192,128 @@ def get_complete_test_set() -> pd.DataFrame:
|
|
132 |
"""
|
133 |
# 1) Try HF Hub private
|
134 |
try:
|
|
|
135 |
ds = load_dataset(TEST_SET_DATASET + "-private", split="train", token=HF_TOKEN)
|
136 |
df = ds.to_pandas()
|
137 |
print(f"✅ Loaded complete test set from HF Hub-private ({len(df):,} samples)")
|
138 |
return df
|
139 |
except Exception as e:
|
140 |
-
print("⚠️
|
141 |
|
142 |
# 2) Try local CSV
|
143 |
if os.path.exists(LOCAL_COMPLETE_CSV):
|
144 |
try:
|
145 |
df = pd.read_csv(LOCAL_COMPLETE_CSV)
|
146 |
print(f"✅ Loaded complete test set from local CSV ({len(df):,} samples)")
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
148 |
except Exception as e:
|
149 |
-
print("⚠️
|
150 |
|
151 |
# 3) Regenerate & save
|
152 |
-
print("🔄 Generating new complete test set
|
153 |
_, complete_df = _generate_and_save_test_set()
|
154 |
return complete_df
|
155 |
|
156 |
-
|
157 |
-
def create_test_set_download() -> (str, dict):
|
158 |
"""
|
159 |
Create a CSV download of the public test set and return its path + stats.
|
160 |
"""
|
161 |
public_df = get_public_test_set()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
download_path = LOCAL_PUBLIC_CSV
|
163 |
# Ensure the CSV is up-to-date
|
164 |
-
|
|
|
|
|
|
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
return download_path, stats
|
174 |
|
175 |
-
|
176 |
def validate_test_set_integrity() -> dict:
|
177 |
"""
|
178 |
Validate test set coverage and integrity.
|
179 |
"""
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
|
184 |
-
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# src/test_set.py
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import yaml
|
|
|
19 |
LOCAL_PUBLIC_CSV = "salt_test_set.csv"
|
20 |
LOCAL_COMPLETE_CSV = "salt_complete_test_set.csv"
|
21 |
|
|
|
22 |
def generate_test_set(max_samples_per_pair: int = MAX_TEST_SAMPLES) -> pd.DataFrame:
|
23 |
"""
|
24 |
Generate standardized test set from the SALT dataset.
|
25 |
"""
|
26 |
print("🔄 Generating SALT test set from source dataset...")
|
27 |
+
|
28 |
+
try:
|
29 |
+
# Build SALT dataset config - using 'test' split for consistency
|
30 |
+
dataset_config = f'''
|
31 |
+
huggingface_load:
|
32 |
+
path: {SALT_DATASET}
|
33 |
+
name: text-all
|
34 |
+
split: test
|
35 |
+
source:
|
36 |
+
type: text
|
37 |
+
language: {ALL_UG40_LANGUAGES}
|
38 |
+
target:
|
39 |
+
type: text
|
40 |
+
language: {ALL_UG40_LANGUAGES}
|
41 |
+
allow_same_src_and_tgt_language: False
|
42 |
+
'''
|
43 |
+
|
44 |
+
config = yaml.safe_load(dataset_config)
|
45 |
+
print("📥 Loading SALT dataset...")
|
46 |
+
full_data = pd.DataFrame(salt.dataset.create(config))
|
47 |
+
|
48 |
+
print(f"📊 Loaded {len(full_data):,} samples from SALT dataset")
|
49 |
+
|
50 |
+
test_samples = []
|
51 |
+
sample_id_counter = 1
|
52 |
+
|
53 |
+
# Generate samples for each language pair
|
54 |
+
for src_lang in ALL_UG40_LANGUAGES:
|
55 |
+
for tgt_lang in ALL_UG40_LANGUAGES:
|
56 |
+
if src_lang == tgt_lang:
|
57 |
+
continue
|
58 |
+
|
59 |
+
# Filter for this language pair
|
60 |
+
pair_data = full_data[
|
61 |
+
(full_data['source.language'] == src_lang) &
|
62 |
+
(full_data['target.language'] == tgt_lang)
|
63 |
+
]
|
64 |
+
|
65 |
+
if pair_data.empty:
|
66 |
+
print(f"⚠️ No data found for {src_lang} → {tgt_lang}")
|
67 |
+
continue
|
68 |
+
|
69 |
+
# Sample up to max_samples_per_pair
|
70 |
+
n_samples = min(len(pair_data), max_samples_per_pair)
|
71 |
+
sampled = pair_data.sample(n=n_samples, random_state=42)
|
72 |
+
|
73 |
+
print(f"✅ {src_lang} → {tgt_lang}: {n_samples} samples")
|
74 |
+
|
75 |
+
for _, row in sampled.iterrows():
|
76 |
+
test_samples.append({
|
77 |
+
'sample_id': f"salt_{sample_id_counter:06d}",
|
78 |
+
'source_text': row['source'],
|
79 |
+
'target_text': row['target'],
|
80 |
+
'source_language': src_lang,
|
81 |
+
'target_language': tgt_lang,
|
82 |
+
'domain': row.get('domain', 'general'),
|
83 |
+
'google_comparable': (
|
84 |
+
src_lang in GOOGLE_SUPPORTED_LANGUAGES and
|
85 |
+
tgt_lang in GOOGLE_SUPPORTED_LANGUAGES
|
86 |
+
)
|
87 |
+
})
|
88 |
+
sample_id_counter += 1
|
89 |
+
|
90 |
+
test_df = pd.DataFrame(test_samples)
|
91 |
+
|
92 |
+
if test_df.empty:
|
93 |
+
raise ValueError("No test samples generated - check SALT dataset availability")
|
94 |
+
|
95 |
+
print(f"✅ Generated test set: {len(test_df):,} samples across {len(test_df.groupby(['source_language', 'target_language'])):,} pairs")
|
96 |
+
|
97 |
+
# Add some statistics
|
98 |
+
google_samples = test_df['google_comparable'].sum()
|
99 |
+
unique_pairs = len(test_df.groupby(['source_language', 'target_language']))
|
100 |
+
|
101 |
+
print(f"📈 Test set statistics:")
|
102 |
+
print(f" - Total samples: {len(test_df):,}")
|
103 |
+
print(f" - Language pairs: {unique_pairs}")
|
104 |
+
print(f" - Google comparable: {google_samples:,} samples")
|
105 |
+
print(f" - UG40 only: {len(test_df) - google_samples:,} samples")
|
106 |
+
|
107 |
+
return test_df
|
108 |
+
|
109 |
+
except Exception as e:
|
110 |
+
print(f"❌ Error generating test set: {e}")
|
111 |
+
# Return empty DataFrame with correct structure
|
112 |
+
return pd.DataFrame(columns=[
|
113 |
+
'sample_id', 'source_text', 'target_text', 'source_language',
|
114 |
+
'target_language', 'domain', 'google_comparable'
|
115 |
+
])
|
116 |
|
117 |
+
def _generate_and_save_test_set() -> tuple[pd.DataFrame, pd.DataFrame]:
|
118 |
"""
|
119 |
Generate the full test set and persist both public and complete CSV files.
|
120 |
"""
|
121 |
+
print("🔄 Generating and saving test sets...")
|
122 |
+
|
123 |
full_df = generate_test_set()
|
124 |
+
|
125 |
+
if full_df.empty:
|
126 |
+
print("❌ Failed to generate test set")
|
127 |
+
# Return empty DataFrames with correct structure
|
128 |
+
empty_public = pd.DataFrame(columns=[
|
129 |
+
'sample_id', 'source_text', 'source_language',
|
130 |
+
'target_language', 'domain', 'google_comparable'
|
131 |
+
])
|
132 |
+
empty_complete = pd.DataFrame(columns=[
|
133 |
+
'sample_id', 'source_text', 'target_text', 'source_language',
|
134 |
+
'target_language', 'domain', 'google_comparable'
|
135 |
+
])
|
136 |
+
return empty_public, empty_complete
|
137 |
+
|
138 |
# Public version (no target_text)
|
139 |
public_df = full_df[[
|
140 |
'sample_id', 'source_text', 'source_language',
|
141 |
'target_language', 'domain', 'google_comparable'
|
142 |
+
]].copy()
|
143 |
+
|
144 |
+
# Save both versions
|
145 |
+
try:
|
146 |
+
public_df.to_csv(LOCAL_PUBLIC_CSV, index=False)
|
147 |
+
full_df.to_csv(LOCAL_COMPLETE_CSV, index=False)
|
148 |
+
print(f"✅ Saved local CSVs: {LOCAL_PUBLIC_CSV}, {LOCAL_COMPLETE_CSV}")
|
149 |
+
except Exception as e:
|
150 |
+
print(f"⚠️ Error saving CSVs: {e}")
|
151 |
+
|
152 |
return public_df, full_df
|
153 |
|
|
|
154 |
def get_public_test_set() -> pd.DataFrame:
|
155 |
"""
|
156 |
Load the public test set (without targets).
|
|
|
158 |
"""
|
159 |
# 1) Try HF Hub
|
160 |
try:
|
161 |
+
print("📥 Attempting to load public test set from HF Hub...")
|
162 |
ds = load_dataset(TEST_SET_DATASET, split="train", token=HF_TOKEN)
|
163 |
df = ds.to_pandas()
|
164 |
print(f"✅ Loaded public test set from HF Hub ({len(df):,} samples)")
|
165 |
return df
|
166 |
except Exception as e:
|
167 |
+
print(f"⚠️ HF Hub load failed: {e}")
|
168 |
|
169 |
# 2) Try local CSV
|
170 |
if os.path.exists(LOCAL_PUBLIC_CSV):
|
171 |
try:
|
172 |
df = pd.read_csv(LOCAL_PUBLIC_CSV)
|
173 |
print(f"✅ Loaded public test set from local CSV ({len(df):,} samples)")
|
174 |
+
# Validate basic structure
|
175 |
+
required_cols = ['sample_id', 'source_text', 'source_language', 'target_language']
|
176 |
+
if all(col in df.columns for col in required_cols):
|
177 |
+
return df
|
178 |
+
else:
|
179 |
+
print("⚠️ Local CSV has invalid structure, regenerating...")
|
180 |
except Exception as e:
|
181 |
+
print(f"⚠️ Failed to read local CSV: {e}")
|
182 |
|
183 |
# 3) Regenerate & save
|
184 |
+
print("🔄 Generating new public test set...")
|
185 |
public_df, _ = _generate_and_save_test_set()
|
186 |
return public_df
|
187 |
|
|
|
188 |
def get_complete_test_set() -> pd.DataFrame:
|
189 |
"""
|
190 |
Load the complete test set (with targets).
|
|
|
192 |
"""
|
193 |
# 1) Try HF Hub private
|
194 |
try:
|
195 |
+
print("📥 Attempting to load complete test set from HF Hub-private...")
|
196 |
ds = load_dataset(TEST_SET_DATASET + "-private", split="train", token=HF_TOKEN)
|
197 |
df = ds.to_pandas()
|
198 |
print(f"✅ Loaded complete test set from HF Hub-private ({len(df):,} samples)")
|
199 |
return df
|
200 |
except Exception as e:
|
201 |
+
print(f"⚠️ HF Hub-private load failed: {e}")
|
202 |
|
203 |
# 2) Try local CSV
|
204 |
if os.path.exists(LOCAL_COMPLETE_CSV):
|
205 |
try:
|
206 |
df = pd.read_csv(LOCAL_COMPLETE_CSV)
|
207 |
print(f"✅ Loaded complete test set from local CSV ({len(df):,} samples)")
|
208 |
+
# Validate basic structure
|
209 |
+
required_cols = ['sample_id', 'source_text', 'target_text', 'source_language', 'target_language']
|
210 |
+
if all(col in df.columns for col in required_cols):
|
211 |
+
return df
|
212 |
+
else:
|
213 |
+
print("⚠️ Local CSV has invalid structure, regenerating...")
|
214 |
except Exception as e:
|
215 |
+
print(f"⚠️ Failed to read local complete CSV: {e}")
|
216 |
|
217 |
# 3) Regenerate & save
|
218 |
+
print("🔄 Generating new complete test set...")
|
219 |
_, complete_df = _generate_and_save_test_set()
|
220 |
return complete_df
|
221 |
|
222 |
+
def create_test_set_download() -> tuple[str, dict]:
|
|
|
223 |
"""
|
224 |
Create a CSV download of the public test set and return its path + stats.
|
225 |
"""
|
226 |
public_df = get_public_test_set()
|
227 |
+
|
228 |
+
if public_df.empty:
|
229 |
+
# Create minimal stats for empty dataset
|
230 |
+
stats = {
|
231 |
+
'total_samples': 0,
|
232 |
+
'language_pairs': 0,
|
233 |
+
'google_comparable_samples': 0,
|
234 |
+
'languages': [],
|
235 |
+
'domains': []
|
236 |
+
}
|
237 |
+
return LOCAL_PUBLIC_CSV, stats
|
238 |
+
|
239 |
download_path = LOCAL_PUBLIC_CSV
|
240 |
# Ensure the CSV is up-to-date
|
241 |
+
try:
|
242 |
+
public_df.to_csv(download_path, index=False)
|
243 |
+
except Exception as e:
|
244 |
+
print(f"⚠️ Error updating CSV: {e}")
|
245 |
|
246 |
+
# Calculate statistics
|
247 |
+
try:
|
248 |
+
stats = {
|
249 |
+
'total_samples': len(public_df),
|
250 |
+
'language_pairs': len(public_df.groupby(['source_language', 'target_language'])),
|
251 |
+
'google_comparable_samples': int(public_df['google_comparable'].sum()) if 'google_comparable' in public_df.columns else 0,
|
252 |
+
'languages': sorted(list(set(public_df['source_language']).union(public_df['target_language']))),
|
253 |
+
'domains': public_df['domain'].unique().tolist() if 'domain' in public_df.columns else ['general']
|
254 |
+
}
|
255 |
+
except Exception as e:
|
256 |
+
print(f"⚠️ Error calculating stats: {e}")
|
257 |
+
stats = {
|
258 |
+
'total_samples': len(public_df),
|
259 |
+
'language_pairs': 0,
|
260 |
+
'google_comparable_samples': 0,
|
261 |
+
'languages': [],
|
262 |
+
'domains': []
|
263 |
+
}
|
264 |
+
|
265 |
return download_path, stats
|
266 |
|
|
|
267 |
def validate_test_set_integrity() -> dict:
|
268 |
"""
|
269 |
Validate test set coverage and integrity.
|
270 |
"""
|
271 |
+
try:
|
272 |
+
public_df = get_public_test_set()
|
273 |
+
complete_df = get_complete_test_set()
|
274 |
+
|
275 |
+
if public_df.empty or complete_df.empty:
|
276 |
+
return {
|
277 |
+
'alignment_check': False,
|
278 |
+
'total_samples': 0,
|
279 |
+
'coverage_by_pair': {},
|
280 |
+
'missing_pairs': [],
|
281 |
+
'error': 'Test sets are empty or could not be loaded'
|
282 |
+
}
|
283 |
|
284 |
+
public_ids = set(public_df['sample_id'])
|
285 |
+
private_ids = set(complete_df['sample_id'])
|
286 |
|
287 |
+
coverage_by_pair = {}
|
288 |
+
for src in ALL_UG40_LANGUAGES:
|
289 |
+
for tgt in ALL_UG40_LANGUAGES:
|
290 |
+
if src == tgt:
|
291 |
+
continue
|
292 |
+
subset = public_df[
|
293 |
+
(public_df['source_language'] == src) &
|
294 |
+
(public_df['target_language'] == tgt)
|
295 |
+
]
|
296 |
+
count = len(subset)
|
297 |
+
coverage_by_pair[f"{src}_{tgt}"] = {
|
298 |
+
'count': count,
|
299 |
+
'has_samples': count >= MIN_SAMPLES_PER_PAIR
|
300 |
+
}
|
301 |
|
302 |
+
return {
|
303 |
+
'alignment_check': public_ids <= private_ids,
|
304 |
+
'total_samples': len(public_df),
|
305 |
+
'coverage_by_pair': coverage_by_pair,
|
306 |
+
'missing_pairs': [k for k, v in coverage_by_pair.items() if not v['has_samples']],
|
307 |
+
'public_samples': len(public_df),
|
308 |
+
'private_samples': len(complete_df),
|
309 |
+
'id_alignment_rate': len(public_ids & private_ids) / len(public_ids) if public_ids else 0.0
|
310 |
+
}
|
311 |
+
|
312 |
+
except Exception as e:
|
313 |
+
return {
|
314 |
+
'alignment_check': False,
|
315 |
+
'total_samples': 0,
|
316 |
+
'coverage_by_pair': {},
|
317 |
+
'missing_pairs': [],
|
318 |
+
'error': f'Validation failed: {str(e)}'
|
319 |
+
}
|