Spaces:
Sleeping
Sleeping
Update src/validation.py
Browse files- src/validation.py +538 -200
src/validation.py
CHANGED
@@ -4,179 +4,440 @@ import numpy as np
|
|
4 |
from typing import Dict, List, Tuple, Optional
|
5 |
import json
|
6 |
import io
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
def validate_file_format(file_content: bytes, filename: str) -> Dict:
|
10 |
-
"""Validate uploaded file format and structure."""
|
11 |
-
|
12 |
try:
|
13 |
# Determine file type
|
14 |
-
if filename.endswith(
|
15 |
df = pd.read_csv(io.BytesIO(file_content))
|
16 |
-
elif filename.endswith(
|
17 |
-
df = pd.read_csv(io.BytesIO(file_content), sep=
|
18 |
-
elif filename.endswith(
|
19 |
-
data = json.loads(file_content.decode(
|
20 |
df = pd.DataFrame(data)
|
21 |
else:
|
22 |
return {
|
23 |
-
|
24 |
-
|
25 |
}
|
26 |
-
|
27 |
# Check required columns
|
28 |
-
missing_cols = set(PREDICTION_FORMAT[
|
29 |
if missing_cols:
|
30 |
return {
|
31 |
-
|
32 |
-
|
33 |
}
|
34 |
-
|
35 |
# Basic data validation
|
36 |
if len(df) == 0:
|
37 |
-
return {
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
# Check for required data
|
43 |
-
if df[
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
'valid': False,
|
53 |
-
'error': f"Missing prediction values found ({na_count} empty predictions)"
|
54 |
-
}
|
55 |
-
|
56 |
# Check for duplicates
|
57 |
-
duplicates = df[
|
58 |
if duplicates.any():
|
59 |
dup_count = duplicates.sum()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
return {
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
63 |
}
|
64 |
-
|
65 |
return {
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
}
|
71 |
-
|
72 |
except Exception as e:
|
73 |
-
return {
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
77 |
|
78 |
-
def validate_predictions_content(predictions: pd.DataFrame) -> Dict:
|
79 |
-
"""Validate prediction content quality."""
|
80 |
-
|
81 |
issues = []
|
82 |
warnings = []
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
86 |
if empty_predictions > 0:
|
87 |
issues.append(f"{empty_predictions} empty predictions found")
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
# Check for suspiciously short predictions
|
90 |
-
short_predictions = (
|
91 |
-
if short_predictions > len(predictions) * 0.
|
92 |
-
|
93 |
-
|
94 |
# Check for suspiciously long predictions
|
95 |
-
long_predictions = (
|
96 |
-
if long_predictions > 0:
|
97 |
warnings.append(f"{long_predictions} very long predictions (> 500 characters)")
|
98 |
-
|
99 |
-
# Check for repeated predictions
|
100 |
-
duplicate_predictions = predictions[
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
#
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
return {
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
121 |
}
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
126 |
# Convert IDs to string for comparison
|
127 |
-
pred_ids = set(predictions[
|
128 |
-
test_ids = set(test_set[
|
129 |
-
|
130 |
-
# Check coverage
|
131 |
missing_ids = test_ids - pred_ids
|
132 |
extra_ids = pred_ids - test_ids
|
133 |
matching_ids = pred_ids & test_ids
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
pair_coverage = {}
|
139 |
for _, row in test_set.iterrows():
|
140 |
pair_key = f"{row['source_language']}_{row['target_language']}"
|
141 |
if pair_key not in pair_coverage:
|
142 |
-
pair_coverage[pair_key] = {
|
143 |
-
|
144 |
-
pair_coverage[pair_key][
|
145 |
-
if str(row[
|
146 |
-
pair_coverage[pair_key][
|
147 |
-
|
148 |
# Calculate pair-wise coverage rates
|
149 |
for pair_key in pair_coverage:
|
150 |
pair_info = pair_coverage[pair_key]
|
151 |
-
pair_info[
|
152 |
-
|
|
|
|
|
|
|
|
|
153 |
return {
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
}
|
163 |
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
format_result: Dict,
|
166 |
-
content_result: Dict,
|
167 |
test_set_result: Dict,
|
168 |
-
|
|
|
|
|
169 |
) -> str:
|
170 |
-
"""Generate
|
171 |
-
|
172 |
report = []
|
173 |
-
|
174 |
# Header
|
175 |
-
report.append(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
report.append("")
|
177 |
-
|
178 |
# File format validation
|
179 |
-
if format_result[
|
180 |
report.append("✅ **File Format**: Valid")
|
181 |
report.append(f" - Rows: {format_result['row_count']:,}")
|
182 |
report.append(f" - Columns: {', '.join(format_result['columns'])}")
|
@@ -184,102 +445,179 @@ def generate_validation_report(
|
|
184 |
report.append("❌ **File Format**: Invalid")
|
185 |
report.append(f" - Error: {format_result['error']}")
|
186 |
return "\n".join(report)
|
187 |
-
|
188 |
-
# Content validation
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
192 |
report.append(f" - ❌ {issue}")
|
193 |
else:
|
194 |
report.append("✅ **Content Quality**: Good")
|
195 |
-
|
196 |
-
if content_result[
|
197 |
-
for warning in content_result[
|
198 |
report.append(f" - ⚠️ {warning}")
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
203 |
report.append("✅ **Test Set Coverage**: Complete")
|
204 |
-
elif
|
205 |
-
report.append("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
else:
|
207 |
-
report.append(
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
222 |
report.append("")
|
223 |
-
report.append("
|
224 |
-
for
|
225 |
-
|
226 |
-
|
227 |
-
report.append(f" - {src}→{tgt}: {info['covered']}/{info['total']} ({info['coverage_rate']:.1%})")
|
228 |
-
|
229 |
-
if len(incomplete_pairs) > 5:
|
230 |
-
report.append(f" - ... and {len(incomplete_pairs) - 5} more pairs")
|
231 |
-
|
232 |
# Final verdict
|
233 |
report.append("")
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
else:
|
239 |
-
report.append("❌ **
|
240 |
-
|
241 |
return "\n".join(report)
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
return {
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
255 |
}
|
256 |
-
|
257 |
-
predictions = format_result[
|
258 |
-
|
259 |
-
# Step
|
260 |
-
content_result =
|
261 |
-
|
262 |
-
# Step
|
263 |
-
test_set_result =
|
264 |
-
|
265 |
-
# Step
|
266 |
-
|
267 |
-
|
268 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
is_valid = (
|
270 |
-
format_result[
|
271 |
-
not content_result[
|
272 |
-
test_set_result[
|
|
|
|
|
273 |
)
|
274 |
-
|
275 |
return {
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from typing import Dict, List, Tuple, Optional
|
5 |
import json
|
6 |
import io
|
7 |
+
import re
|
8 |
+
from config import (
|
9 |
+
PREDICTION_FORMAT,
|
10 |
+
VALIDATION_CONFIG,
|
11 |
+
MODEL_CATEGORIES,
|
12 |
+
EVALUATION_TRACKS,
|
13 |
+
ALL_UG40_LANGUAGES,
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
def detect_model_category(model_name: str, author: str, description: str) -> str:
|
18 |
+
"""Automatically detect model category based on name and metadata."""
|
19 |
+
|
20 |
+
# Combine all text for analysis
|
21 |
+
text_to_analyze = f"{model_name} {author} {description}".lower()
|
22 |
+
|
23 |
+
# Category detection patterns
|
24 |
+
detection_patterns = PREDICTION_FORMAT["category_detection"]
|
25 |
+
|
26 |
+
# Check for specific patterns
|
27 |
+
if any(
|
28 |
+
pattern in text_to_analyze for pattern in detection_patterns.get("google", [])
|
29 |
+
):
|
30 |
+
return "commercial"
|
31 |
+
|
32 |
+
if any(
|
33 |
+
pattern in text_to_analyze for pattern in detection_patterns.get("nllb", [])
|
34 |
+
):
|
35 |
+
return "research"
|
36 |
+
|
37 |
+
if any(pattern in text_to_analyze for pattern in detection_patterns.get("m2m", [])):
|
38 |
+
return "research"
|
39 |
+
|
40 |
+
if any(
|
41 |
+
pattern in text_to_analyze for pattern in detection_patterns.get("baseline", [])
|
42 |
+
):
|
43 |
+
return "baseline"
|
44 |
+
|
45 |
+
# Check for research indicators
|
46 |
+
research_indicators = [
|
47 |
+
"university",
|
48 |
+
"research",
|
49 |
+
"paper",
|
50 |
+
"arxiv",
|
51 |
+
"acl",
|
52 |
+
"emnlp",
|
53 |
+
"naacl",
|
54 |
+
"transformer",
|
55 |
+
"bert",
|
56 |
+
"gpt",
|
57 |
+
"t5",
|
58 |
+
"mbart",
|
59 |
+
"academic",
|
60 |
+
]
|
61 |
+
if any(indicator in text_to_analyze for indicator in research_indicators):
|
62 |
+
return "research"
|
63 |
+
|
64 |
+
# Check for commercial indicators
|
65 |
+
commercial_indicators = [
|
66 |
+
"google",
|
67 |
+
"microsoft",
|
68 |
+
"azure",
|
69 |
+
"aws",
|
70 |
+
"openai",
|
71 |
+
"anthropic",
|
72 |
+
"commercial",
|
73 |
+
"api",
|
74 |
+
"cloud",
|
75 |
+
"translate",
|
76 |
+
]
|
77 |
+
if any(indicator in text_to_analyze for indicator in commercial_indicators):
|
78 |
+
return "commercial"
|
79 |
+
|
80 |
+
# Default to community
|
81 |
+
return "community"
|
82 |
+
|
83 |
+
|
84 |
+
def validate_file_format_enhanced(file_content: bytes, filename: str) -> Dict:
|
85 |
+
"""Enhanced file format validation with stricter requirements."""
|
86 |
|
|
|
|
|
|
|
87 |
try:
|
88 |
# Determine file type
|
89 |
+
if filename.endswith(".csv"):
|
90 |
df = pd.read_csv(io.BytesIO(file_content))
|
91 |
+
elif filename.endswith(".tsv"):
|
92 |
+
df = pd.read_csv(io.BytesIO(file_content), sep="\t")
|
93 |
+
elif filename.endswith(".json"):
|
94 |
+
data = json.loads(file_content.decode("utf-8"))
|
95 |
df = pd.DataFrame(data)
|
96 |
else:
|
97 |
return {
|
98 |
+
"valid": False,
|
99 |
+
"error": f"Unsupported file type. Use: {', '.join(PREDICTION_FORMAT['file_types'])}",
|
100 |
}
|
101 |
+
|
102 |
# Check required columns
|
103 |
+
missing_cols = set(PREDICTION_FORMAT["required_columns"]) - set(df.columns)
|
104 |
if missing_cols:
|
105 |
return {
|
106 |
+
"valid": False,
|
107 |
+
"error": f"Missing required columns: {', '.join(missing_cols)}",
|
108 |
}
|
109 |
+
|
110 |
# Basic data validation
|
111 |
if len(df) == 0:
|
112 |
+
return {"valid": False, "error": "File is empty"}
|
113 |
+
|
114 |
+
# Enhanced validation checks
|
115 |
+
validation_issues = []
|
116 |
+
|
117 |
# Check for required data
|
118 |
+
if df["sample_id"].isna().any():
|
119 |
+
validation_issues.append("Missing sample_id values found")
|
120 |
+
|
121 |
+
if df["prediction"].isna().any():
|
122 |
+
na_count = df["prediction"].isna().sum()
|
123 |
+
validation_issues.append(
|
124 |
+
f"Missing prediction values found ({na_count} empty predictions)"
|
125 |
+
)
|
126 |
+
|
|
|
|
|
|
|
|
|
127 |
# Check for duplicates
|
128 |
+
duplicates = df["sample_id"].duplicated()
|
129 |
if duplicates.any():
|
130 |
dup_count = duplicates.sum()
|
131 |
+
validation_issues.append(
|
132 |
+
f"Duplicate sample_id values found ({dup_count} duplicates)"
|
133 |
+
)
|
134 |
+
|
135 |
+
# Data type validation
|
136 |
+
if not df["sample_id"].dtype == "object" and not df[
|
137 |
+
"sample_id"
|
138 |
+
].dtype.name.startswith("str"):
|
139 |
+
df["sample_id"] = df["sample_id"].astype(str)
|
140 |
+
|
141 |
+
# Check sample_id format
|
142 |
+
invalid_ids = ~df["sample_id"].str.match(r"salt_\d{6}", na=False)
|
143 |
+
if invalid_ids.any():
|
144 |
+
invalid_count = invalid_ids.sum()
|
145 |
+
validation_issues.append(
|
146 |
+
f"Invalid sample_id format found ({invalid_count} invalid IDs)"
|
147 |
+
)
|
148 |
+
|
149 |
+
# Return results
|
150 |
+
if validation_issues:
|
151 |
return {
|
152 |
+
"valid": False,
|
153 |
+
"error": "; ".join(validation_issues),
|
154 |
+
"dataframe": df,
|
155 |
+
"row_count": len(df),
|
156 |
+
"columns": list(df.columns),
|
157 |
}
|
158 |
+
|
159 |
return {
|
160 |
+
"valid": True,
|
161 |
+
"dataframe": df,
|
162 |
+
"row_count": len(df),
|
163 |
+
"columns": list(df.columns),
|
164 |
}
|
165 |
+
|
166 |
except Exception as e:
|
167 |
+
return {"valid": False, "error": f"Error parsing file: {str(e)}"}
|
168 |
+
|
169 |
+
|
170 |
+
def validate_predictions_content_enhanced(predictions: pd.DataFrame) -> Dict:
|
171 |
+
"""Enhanced prediction content validation with stricter quality checks."""
|
172 |
|
|
|
|
|
|
|
173 |
issues = []
|
174 |
warnings = []
|
175 |
+
quality_metrics = {}
|
176 |
+
|
177 |
+
# Basic content checks
|
178 |
+
empty_predictions = predictions["prediction"].str.strip().eq("").sum()
|
179 |
if empty_predictions > 0:
|
180 |
issues.append(f"{empty_predictions} empty predictions found")
|
181 |
+
|
182 |
+
# Length analysis
|
183 |
+
pred_lengths = predictions["prediction"].str.len()
|
184 |
+
quality_metrics["avg_length"] = float(pred_lengths.mean())
|
185 |
+
quality_metrics["std_length"] = float(pred_lengths.std())
|
186 |
+
|
187 |
# Check for suspiciously short predictions
|
188 |
+
short_predictions = (pred_lengths < 3).sum()
|
189 |
+
if short_predictions > len(predictions) * 0.05: # More than 5%
|
190 |
+
issues.append(f"{short_predictions} very short predictions (< 3 characters)")
|
191 |
+
|
192 |
# Check for suspiciously long predictions
|
193 |
+
long_predictions = (pred_lengths > 500).sum()
|
194 |
+
if long_predictions > len(predictions) * 0.01: # More than 1%
|
195 |
warnings.append(f"{long_predictions} very long predictions (> 500 characters)")
|
196 |
+
|
197 |
+
# Check for repeated predictions (more stringent)
|
198 |
+
duplicate_predictions = predictions["prediction"].duplicated().sum()
|
199 |
+
duplicate_rate = duplicate_predictions / len(predictions)
|
200 |
+
quality_metrics["duplicate_rate"] = float(duplicate_rate)
|
201 |
+
|
202 |
+
if duplicate_rate > VALIDATION_CONFIG["quality_thresholds"]["max_duplicate_rate"]:
|
203 |
+
issues.append(
|
204 |
+
f"{duplicate_predictions} duplicate prediction texts ({duplicate_rate:.1%})"
|
205 |
+
)
|
206 |
+
|
207 |
+
# Check for placeholder text
|
208 |
+
placeholder_patterns = [
|
209 |
+
r"^(test|placeholder|todo|xxx|aaa|bbb)$",
|
210 |
+
r"^[a-z]{1,3}$", # Very short gibberish
|
211 |
+
r"^\d+$", # Just numbers
|
212 |
+
r"^[^\w\s]*$", # Only punctuation
|
213 |
+
]
|
214 |
+
|
215 |
+
placeholder_count = 0
|
216 |
+
for pattern in placeholder_patterns:
|
217 |
+
placeholder_matches = (
|
218 |
+
predictions["prediction"]
|
219 |
+
.str.match(pattern, flags=re.IGNORECASE, na=False)
|
220 |
+
.sum()
|
221 |
+
)
|
222 |
+
placeholder_count += placeholder_matches
|
223 |
+
|
224 |
+
if placeholder_count > len(predictions) * 0.02: # More than 2%
|
225 |
+
issues.append(f"{placeholder_count} placeholder-like predictions detected")
|
226 |
+
|
227 |
+
# Language detection (basic)
|
228 |
+
non_ascii_rate = (
|
229 |
+
predictions["prediction"].str.contains(r"[^\x00-\x7f]", na=False).mean()
|
230 |
+
)
|
231 |
+
quality_metrics["non_ascii_rate"] = float(non_ascii_rate)
|
232 |
+
|
233 |
+
# Check for appropriate character distribution for African languages
|
234 |
+
if non_ascii_rate < 0.1: # Less than 10% non-ASCII might indicate English-only
|
235 |
+
warnings.append(
|
236 |
+
"Low non-ASCII character rate - check if translations include local language scripts"
|
237 |
+
)
|
238 |
+
|
239 |
+
# Calculate overall quality score
|
240 |
+
quality_score = 1.0
|
241 |
+
quality_score -= len(issues) * 0.3 # Major penalty for issues
|
242 |
+
quality_score -= len(warnings) * 0.1 # Minor penalty for warnings
|
243 |
+
quality_score -= (
|
244 |
+
max(0, duplicate_rate - 0.05) * 2
|
245 |
+
) # Penalty for excessive duplicates
|
246 |
+
|
247 |
+
# Length appropriateness
|
248 |
+
if (
|
249 |
+
quality_metrics["avg_length"]
|
250 |
+
< VALIDATION_CONFIG["quality_thresholds"]["min_avg_length"]
|
251 |
+
):
|
252 |
+
quality_score -= 0.2
|
253 |
+
elif (
|
254 |
+
quality_metrics["avg_length"]
|
255 |
+
> VALIDATION_CONFIG["quality_thresholds"]["max_avg_length"]
|
256 |
+
):
|
257 |
+
quality_score -= 0.1
|
258 |
+
|
259 |
+
quality_score = max(0.0, min(1.0, quality_score))
|
260 |
+
|
261 |
return {
|
262 |
+
"has_issues": len(issues) > 0,
|
263 |
+
"issues": issues,
|
264 |
+
"warnings": warnings,
|
265 |
+
"quality_score": quality_score,
|
266 |
+
"quality_metrics": quality_metrics,
|
267 |
}
|
268 |
|
269 |
+
|
270 |
+
def validate_against_test_set_enhanced(
|
271 |
+
predictions: pd.DataFrame, test_set: pd.DataFrame
|
272 |
+
) -> Dict:
|
273 |
+
"""Enhanced validation against test set with track-specific analysis."""
|
274 |
+
|
275 |
# Convert IDs to string for comparison
|
276 |
+
pred_ids = set(predictions["sample_id"].astype(str))
|
277 |
+
test_ids = set(test_set["sample_id"].astype(str))
|
278 |
+
|
279 |
+
# Check overall coverage
|
280 |
missing_ids = test_ids - pred_ids
|
281 |
extra_ids = pred_ids - test_ids
|
282 |
matching_ids = pred_ids & test_ids
|
283 |
+
|
284 |
+
overall_coverage = len(matching_ids) / len(test_ids)
|
285 |
+
|
286 |
+
# Track-specific coverage analysis
|
287 |
+
track_coverage = {}
|
288 |
+
|
289 |
+
for track_name, track_config in EVALUATION_TRACKS.items():
|
290 |
+
track_languages = track_config["languages"]
|
291 |
+
|
292 |
+
# Filter test set to track languages
|
293 |
+
track_test_set = test_set[
|
294 |
+
(test_set["source_language"].isin(track_languages))
|
295 |
+
& (test_set["target_language"].isin(track_languages))
|
296 |
+
]
|
297 |
+
|
298 |
+
if len(track_test_set) == 0:
|
299 |
+
continue
|
300 |
+
|
301 |
+
track_test_ids = set(track_test_set["sample_id"].astype(str))
|
302 |
+
track_matching_ids = pred_ids & track_test_ids
|
303 |
+
|
304 |
+
track_coverage[track_name] = {
|
305 |
+
"total_samples": len(track_test_set),
|
306 |
+
"covered_samples": len(track_matching_ids),
|
307 |
+
"coverage_rate": len(track_matching_ids) / len(track_test_set),
|
308 |
+
"meets_minimum": len(track_matching_ids)
|
309 |
+
>= VALIDATION_CONFIG["min_samples_per_track"][track_name],
|
310 |
+
"min_required": VALIDATION_CONFIG["min_samples_per_track"][track_name],
|
311 |
+
}
|
312 |
+
|
313 |
+
# Language pair coverage analysis
|
314 |
pair_coverage = {}
|
315 |
for _, row in test_set.iterrows():
|
316 |
pair_key = f"{row['source_language']}_{row['target_language']}"
|
317 |
if pair_key not in pair_coverage:
|
318 |
+
pair_coverage[pair_key] = {"total": 0, "covered": 0}
|
319 |
+
|
320 |
+
pair_coverage[pair_key]["total"] += 1
|
321 |
+
if str(row["sample_id"]) in pred_ids:
|
322 |
+
pair_coverage[pair_key]["covered"] += 1
|
323 |
+
|
324 |
# Calculate pair-wise coverage rates
|
325 |
for pair_key in pair_coverage:
|
326 |
pair_info = pair_coverage[pair_key]
|
327 |
+
pair_info["coverage_rate"] = pair_info["covered"] / pair_info["total"]
|
328 |
+
|
329 |
+
# Missing rate validation
|
330 |
+
missing_rate = len(missing_ids) / len(test_ids)
|
331 |
+
meets_missing_threshold = missing_rate <= VALIDATION_CONFIG["max_missing_rate"]
|
332 |
+
|
333 |
return {
|
334 |
+
"overall_coverage": overall_coverage,
|
335 |
+
"missing_count": len(missing_ids),
|
336 |
+
"extra_count": len(extra_ids),
|
337 |
+
"matching_count": len(matching_ids),
|
338 |
+
"missing_rate": missing_rate,
|
339 |
+
"meets_missing_threshold": meets_missing_threshold,
|
340 |
+
"is_complete": overall_coverage == 1.0,
|
341 |
+
"track_coverage": track_coverage,
|
342 |
+
"pair_coverage": pair_coverage,
|
343 |
+
"missing_ids_sample": list(missing_ids)[:10],
|
344 |
+
"extra_ids_sample": list(extra_ids)[:10],
|
345 |
+
}
|
346 |
+
|
347 |
+
|
348 |
+
def assess_statistical_adequacy(validation_result: Dict, model_category: str) -> Dict:
|
349 |
+
"""Assess statistical adequacy for scientific evaluation."""
|
350 |
+
|
351 |
+
adequacy_assessment = {
|
352 |
+
"overall_adequate": True,
|
353 |
+
"track_adequacy": {},
|
354 |
+
"recommendations": [],
|
355 |
+
"statistical_power_estimate": {},
|
356 |
}
|
357 |
|
358 |
+
track_coverage = validation_result.get("track_coverage", {})
|
359 |
+
|
360 |
+
for track_name, coverage_info in track_coverage.items():
|
361 |
+
track_config = EVALUATION_TRACKS[track_name]
|
362 |
+
|
363 |
+
# Sample size adequacy
|
364 |
+
covered_samples = coverage_info["covered_samples"]
|
365 |
+
min_required = coverage_info["min_required"]
|
366 |
+
|
367 |
+
sample_adequate = covered_samples >= min_required
|
368 |
+
|
369 |
+
# Coverage rate adequacy
|
370 |
+
coverage_rate = coverage_info["coverage_rate"]
|
371 |
+
coverage_adequate = coverage_rate >= 0.8 # 80% coverage minimum
|
372 |
+
|
373 |
+
# Statistical power estimation (simplified)
|
374 |
+
estimated_power = min(1.0, covered_samples / (min_required * 1.5))
|
375 |
+
|
376 |
+
track_adequate = sample_adequate and coverage_adequate
|
377 |
+
|
378 |
+
adequacy_assessment["track_adequacy"][track_name] = {
|
379 |
+
"sample_adequate": sample_adequate,
|
380 |
+
"coverage_adequate": coverage_adequate,
|
381 |
+
"overall_adequate": track_adequate,
|
382 |
+
"covered_samples": covered_samples,
|
383 |
+
"min_required": min_required,
|
384 |
+
"coverage_rate": coverage_rate,
|
385 |
+
"estimated_power": estimated_power,
|
386 |
+
}
|
387 |
+
|
388 |
+
if not track_adequate:
|
389 |
+
adequacy_assessment["overall_adequate"] = False
|
390 |
+
|
391 |
+
adequacy_assessment["statistical_power_estimate"][track_name] = estimated_power
|
392 |
+
|
393 |
+
# Generate recommendations
|
394 |
+
if not adequacy_assessment["overall_adequate"]:
|
395 |
+
inadequate_tracks = [
|
396 |
+
track
|
397 |
+
for track, info in adequacy_assessment["track_adequacy"].items()
|
398 |
+
if not info["overall_adequate"]
|
399 |
+
]
|
400 |
+
adequacy_assessment["recommendations"].append(
|
401 |
+
f"Insufficient samples for tracks: {', '.join(inadequate_tracks)}"
|
402 |
+
)
|
403 |
+
|
404 |
+
# Category-specific recommendations
|
405 |
+
if model_category == "commercial" and not adequacy_assessment["track_adequacy"].get(
|
406 |
+
"google_comparable", {}
|
407 |
+
).get("overall_adequate", False):
|
408 |
+
adequacy_assessment["recommendations"].append(
|
409 |
+
"Commercial models should ensure adequate coverage of Google-comparable track"
|
410 |
+
)
|
411 |
+
|
412 |
+
return adequacy_assessment
|
413 |
+
|
414 |
+
|
415 |
+
def generate_scientific_validation_report(
|
416 |
format_result: Dict,
|
417 |
+
content_result: Dict,
|
418 |
test_set_result: Dict,
|
419 |
+
adequacy_result: Dict,
|
420 |
+
model_name: str = "",
|
421 |
+
detected_category: str = "community",
|
422 |
) -> str:
|
423 |
+
"""Generate comprehensive scientific validation report."""
|
424 |
+
|
425 |
report = []
|
426 |
+
|
427 |
# Header
|
428 |
+
report.append(f"# 🔬 Scientific Validation Report: {model_name or 'Submission'}")
|
429 |
+
report.append("")
|
430 |
+
|
431 |
+
# Model categorization
|
432 |
+
category_info = MODEL_CATEGORIES.get(
|
433 |
+
detected_category, MODEL_CATEGORIES["community"]
|
434 |
+
)
|
435 |
+
report.append(f"**Detected Model Category**: {category_info['name']}")
|
436 |
+
report.append(f"**Category Description**: {category_info['description']}")
|
437 |
report.append("")
|
438 |
+
|
439 |
# File format validation
|
440 |
+
if format_result["valid"]:
|
441 |
report.append("✅ **File Format**: Valid")
|
442 |
report.append(f" - Rows: {format_result['row_count']:,}")
|
443 |
report.append(f" - Columns: {', '.join(format_result['columns'])}")
|
|
|
445 |
report.append("❌ **File Format**: Invalid")
|
446 |
report.append(f" - Error: {format_result['error']}")
|
447 |
return "\n".join(report)
|
448 |
+
|
449 |
+
# Content quality validation
|
450 |
+
quality_score = content_result.get("quality_score", 0.0)
|
451 |
+
|
452 |
+
if content_result["has_issues"]:
|
453 |
+
report.append("❌ **Content Quality**: Issues Found")
|
454 |
+
for issue in content_result["issues"]:
|
455 |
report.append(f" - ❌ {issue}")
|
456 |
else:
|
457 |
report.append("✅ **Content Quality**: Good")
|
458 |
+
|
459 |
+
if content_result["warnings"]:
|
460 |
+
for warning in content_result["warnings"]:
|
461 |
report.append(f" - ⚠️ {warning}")
|
462 |
+
|
463 |
+
report.append(f" - **Quality Score**: {quality_score:.2f}/1.00")
|
464 |
+
report.append("")
|
465 |
+
|
466 |
+
# Test set coverage validation
|
467 |
+
overall_coverage = test_set_result["overall_coverage"]
|
468 |
+
meets_threshold = test_set_result["meets_missing_threshold"]
|
469 |
+
|
470 |
+
if overall_coverage == 1.0:
|
471 |
report.append("✅ **Test Set Coverage**: Complete")
|
472 |
+
elif overall_coverage >= 0.95 and meets_threshold:
|
473 |
+
report.append("✅ **Test Set Coverage**: Adequate")
|
474 |
+
else:
|
475 |
+
report.append("❌ **Test Set Coverage**: Insufficient")
|
476 |
+
|
477 |
+
report.append(
|
478 |
+
f" - Coverage: {overall_coverage:.1%} ({test_set_result['matching_count']:,} / {test_set_result['matching_count'] + test_set_result['missing_count']:,})"
|
479 |
+
)
|
480 |
+
report.append(f" - Missing Rate: {test_set_result['missing_rate']:.1%}")
|
481 |
+
report.append("")
|
482 |
+
|
483 |
+
# Track-specific coverage analysis
|
484 |
+
report.append("## 📊 Track-Specific Analysis")
|
485 |
+
|
486 |
+
track_coverage = test_set_result.get("track_coverage", {})
|
487 |
+
for track_name, coverage_info in track_coverage.items():
|
488 |
+
track_config = EVALUATION_TRACKS[track_name]
|
489 |
+
|
490 |
+
status = "✅" if coverage_info["meets_minimum"] else "❌"
|
491 |
+
report.append(f"### {status} {track_config['name']}")
|
492 |
+
|
493 |
+
report.append(
|
494 |
+
f" - **Samples**: {coverage_info['covered_samples']:,} / {coverage_info['total_samples']:,}"
|
495 |
+
)
|
496 |
+
report.append(f" - **Coverage**: {coverage_info['coverage_rate']:.1%}")
|
497 |
+
report.append(f" - **Minimum Required**: {coverage_info['min_required']:,}")
|
498 |
+
report.append(
|
499 |
+
f" - **Status**: {'Adequate' if coverage_info['meets_minimum'] else 'Insufficient'}"
|
500 |
+
)
|
501 |
+
report.append("")
|
502 |
+
|
503 |
+
# Statistical adequacy assessment
|
504 |
+
report.append("## 🔬 Statistical Adequacy Assessment")
|
505 |
+
|
506 |
+
if adequacy_result["overall_adequate"]:
|
507 |
+
report.append(
|
508 |
+
"✅ **Overall Assessment**: Statistically adequate for scientific evaluation"
|
509 |
+
)
|
510 |
else:
|
511 |
+
report.append(
|
512 |
+
"❌ **Overall Assessment**: Insufficient for rigorous scientific evaluation"
|
513 |
+
)
|
514 |
+
|
515 |
+
# Track adequacy details
|
516 |
+
for track_name, track_adequacy in adequacy_result["track_adequacy"].items():
|
517 |
+
track_config = EVALUATION_TRACKS[track_name]
|
518 |
+
power = track_adequacy["estimated_power"]
|
519 |
+
|
520 |
+
status = "✅" if track_adequacy["overall_adequate"] else "❌"
|
521 |
+
report.append(
|
522 |
+
f" - {status} **{track_config['name']}**: Statistical power ≈ {power:.1%}"
|
523 |
+
)
|
524 |
+
|
525 |
+
# Recommendations
|
526 |
+
if adequacy_result["recommendations"]:
|
527 |
report.append("")
|
528 |
+
report.append("## 💡 Recommendations")
|
529 |
+
for rec in adequacy_result["recommendations"]:
|
530 |
+
report.append(f" - {rec}")
|
531 |
+
|
|
|
|
|
|
|
|
|
|
|
532 |
# Final verdict
|
533 |
report.append("")
|
534 |
+
all_checks_pass = (
|
535 |
+
format_result["valid"]
|
536 |
+
and not content_result["has_issues"]
|
537 |
+
and overall_coverage >= 0.95
|
538 |
+
and meets_threshold
|
539 |
+
and adequacy_result["overall_adequate"]
|
540 |
+
)
|
541 |
+
|
542 |
+
if all_checks_pass:
|
543 |
+
report.append("🎉 **Final Verdict**: Ready for scientific evaluation!")
|
544 |
+
elif format_result["valid"] and overall_coverage >= 0.8:
|
545 |
+
report.append("⚠️ **Final Verdict**: Can be evaluated with limitations")
|
546 |
else:
|
547 |
+
report.append("❌ **Final Verdict**: Please address issues before submission")
|
548 |
+
|
549 |
return "\n".join(report)
|
550 |
|
551 |
+
|
552 |
+
def validate_submission_scientific(
|
553 |
+
file_content: bytes,
|
554 |
+
filename: str,
|
555 |
+
test_set: pd.DataFrame,
|
556 |
+
model_name: str = "",
|
557 |
+
author: str = "",
|
558 |
+
description: str = "",
|
559 |
+
) -> Dict:
|
560 |
+
"""Complete scientific validation pipeline for submissions."""
|
561 |
+
|
562 |
+
# Step 1: Detect model category
|
563 |
+
detected_category = detect_model_category(model_name, author, description)
|
564 |
+
|
565 |
+
# Step 2: Enhanced file format validation
|
566 |
+
format_result = validate_file_format_enhanced(file_content, filename)
|
567 |
+
if not format_result["valid"]:
|
568 |
return {
|
569 |
+
"valid": False,
|
570 |
+
"category": detected_category,
|
571 |
+
"report": generate_scientific_validation_report(
|
572 |
+
format_result, {}, {}, {}, model_name, detected_category
|
573 |
+
),
|
574 |
+
"predictions": None,
|
575 |
+
"adequacy": {},
|
576 |
}
|
577 |
+
|
578 |
+
predictions = format_result["dataframe"]
|
579 |
+
|
580 |
+
# Step 3: Enhanced content validation
|
581 |
+
content_result = validate_predictions_content_enhanced(predictions)
|
582 |
+
|
583 |
+
# Step 4: Enhanced test set validation
|
584 |
+
test_set_result = validate_against_test_set_enhanced(predictions, test_set)
|
585 |
+
|
586 |
+
# Step 5: Statistical adequacy assessment
|
587 |
+
adequacy_result = assess_statistical_adequacy(test_set_result, detected_category)
|
588 |
+
|
589 |
+
# Step 6: Generate comprehensive report
|
590 |
+
report = generate_scientific_validation_report(
|
591 |
+
format_result,
|
592 |
+
content_result,
|
593 |
+
test_set_result,
|
594 |
+
adequacy_result,
|
595 |
+
model_name,
|
596 |
+
detected_category,
|
597 |
+
)
|
598 |
+
|
599 |
+
# Overall validity determination
|
600 |
is_valid = (
|
601 |
+
format_result["valid"]
|
602 |
+
and not content_result["has_issues"]
|
603 |
+
and test_set_result["overall_coverage"] >= 0.95
|
604 |
+
and test_set_result["meets_missing_threshold"]
|
605 |
+
and adequacy_result["overall_adequate"]
|
606 |
)
|
607 |
+
|
608 |
return {
|
609 |
+
"valid": is_valid,
|
610 |
+
"category": detected_category,
|
611 |
+
"coverage": test_set_result["overall_coverage"],
|
612 |
+
"report": report,
|
613 |
+
"predictions": predictions,
|
614 |
+
"adequacy": adequacy_result,
|
615 |
+
"quality_score": content_result.get("quality_score", 0.8),
|
616 |
+
"track_coverage": test_set_result.get("track_coverage", {}),
|
617 |
+
"scientific_metadata": {
|
618 |
+
"validation_timestamp": pd.Timestamp.now().isoformat(),
|
619 |
+
"validation_version": "2.0-scientific",
|
620 |
+
"detected_category": detected_category,
|
621 |
+
"statistical_adequacy": adequacy_result["overall_adequate"],
|
622 |
+
},
|
623 |
+
}
|