Spaces:
Sleeping
Sleeping
Update src/leaderboard.py
Browse files- src/leaderboard.py +11 -2
src/leaderboard.py
CHANGED
@@ -352,6 +352,11 @@ def get_track_leaderboard(
|
|
352 |
track_quality_col = f"{track}_{metric}"
|
353 |
track_adequate_col = f"{track}_adequate"
|
354 |
|
|
|
|
|
|
|
|
|
|
|
355 |
# Filter by adequacy
|
356 |
if min_adequacy > 0:
|
357 |
adequacy_mask = df["scientific_adequacy_score"] >= min_adequacy
|
@@ -361,8 +366,12 @@ def get_track_leaderboard(
|
|
361 |
if category_filter != "all":
|
362 |
df = df[df["model_category"] == category_filter]
|
363 |
|
364 |
-
# Filter to models that have this track
|
365 |
-
|
|
|
|
|
|
|
|
|
366 |
df = df[valid_mask]
|
367 |
|
368 |
if df.empty:
|
|
|
352 |
track_quality_col = f"{track}_{metric}"
|
353 |
track_adequate_col = f"{track}_adequate"
|
354 |
|
355 |
+
# Ensure columns exist
|
356 |
+
if track_quality_col not in df.columns or track_adequate_col not in df.columns:
|
357 |
+
print(f"Warning: Missing columns for track {track}")
|
358 |
+
return pd.DataFrame()
|
359 |
+
|
360 |
# Filter by adequacy
|
361 |
if min_adequacy > 0:
|
362 |
adequacy_mask = df["scientific_adequacy_score"] >= min_adequacy
|
|
|
366 |
if category_filter != "all":
|
367 |
df = df[df["model_category"] == category_filter]
|
368 |
|
369 |
+
# Filter to models that have this track - fix boolean operation
|
370 |
+
# Convert to proper boolean and handle NaN values
|
371 |
+
quality_mask = pd.to_numeric(df[track_quality_col], errors='coerce') > 0
|
372 |
+
adequate_mask = df[track_adequate_col].fillna(False).astype(bool)
|
373 |
+
|
374 |
+
valid_mask = quality_mask & adequate_mask
|
375 |
df = df[valid_mask]
|
376 |
|
377 |
if df.empty:
|