Spaces:
Sleeping
Sleeping
Create plotting.py
Browse files- src/plotting.py +529 -0
src/plotting.py
ADDED
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# src/plotting.py
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import matplotlib.gridspec as gridspec
|
4 |
+
import matplotlib.colors as mcolors
|
5 |
+
from colorsys import rgb_to_hls, hls_to_rgb
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
import plotly.express as px
|
8 |
+
from plotly.subplots import make_subplots
|
9 |
+
import pandas as pd
|
10 |
+
import numpy as np
|
11 |
+
from collections import defaultdict
|
12 |
+
from typing import Dict, List, Optional, Union
|
13 |
+
from config import LANGUAGE_NAMES, ALL_UG40_LANGUAGES, GOOGLE_SUPPORTED_LANGUAGES, METRICS_CONFIG
|
14 |
+
|
15 |
+
plt.style.use('default')
|
16 |
+
plt.rcParams['figure.facecolor'] = 'white'
|
17 |
+
plt.rcParams['axes.facecolor'] = 'white'
|
18 |
+
|
19 |
+
def create_leaderboard_ranking_plot(df: pd.DataFrame, metric: str = 'quality_score', top_n: int = 15) -> go.Figure:
|
20 |
+
"""Create interactive leaderboard ranking plot using Plotly."""
|
21 |
+
|
22 |
+
if df.empty:
|
23 |
+
fig = go.Figure()
|
24 |
+
fig.add_annotation(
|
25 |
+
text="No data available",
|
26 |
+
xref="paper", yref="paper",
|
27 |
+
x=0.5, y=0.5, showarrow=False,
|
28 |
+
font=dict(size=16)
|
29 |
+
)
|
30 |
+
return fig
|
31 |
+
|
32 |
+
# Get top N models
|
33 |
+
top_models = df.head(top_n)
|
34 |
+
|
35 |
+
# Create color scale based on scores
|
36 |
+
colors = px.colors.qualitative.Set3[:len(top_models)]
|
37 |
+
|
38 |
+
# Create horizontal bar chart
|
39 |
+
fig = go.Figure(data=[
|
40 |
+
go.Bar(
|
41 |
+
y=top_models['model_name'],
|
42 |
+
x=top_models[metric],
|
43 |
+
orientation='h',
|
44 |
+
marker=dict(
|
45 |
+
color=top_models[metric],
|
46 |
+
colorscale='Viridis',
|
47 |
+
showscale=True,
|
48 |
+
colorbar=dict(title=metric.replace('_', ' ').title())
|
49 |
+
),
|
50 |
+
text=[f"{score:.3f}" for score in top_models[metric]],
|
51 |
+
textposition='auto',
|
52 |
+
hovertemplate=(
|
53 |
+
"<b>%{y}</b><br>" +
|
54 |
+
f"{metric.replace('_', ' ').title()}: %{{x:.4f}}<br>" +
|
55 |
+
"Author: %{customdata[0]}<br>" +
|
56 |
+
"Coverage: %{customdata[1]:.1%}<br>" +
|
57 |
+
"<extra></extra>"
|
58 |
+
),
|
59 |
+
customdata=list(zip(top_models['author'], top_models['coverage_rate']))
|
60 |
+
)
|
61 |
+
])
|
62 |
+
|
63 |
+
fig.update_layout(
|
64 |
+
title=f"π SALT Translation Leaderboard - {metric.replace('_', ' ').title()}",
|
65 |
+
xaxis_title=f"{metric.replace('_', ' ').title()} Score",
|
66 |
+
yaxis_title="Models",
|
67 |
+
height=max(400, len(top_models) * 30 + 100),
|
68 |
+
margin=dict(l=20, r=20, t=60, b=20),
|
69 |
+
plot_bgcolor='white',
|
70 |
+
paper_bgcolor='white'
|
71 |
+
)
|
72 |
+
|
73 |
+
# Reverse y-axis to show best model at top
|
74 |
+
fig.update_yaxes(autorange="reversed")
|
75 |
+
|
76 |
+
return fig
|
77 |
+
|
78 |
+
def create_metrics_comparison_plot(df: pd.DataFrame, models: List[str] = None, max_models: int = 8) -> go.Figure:
|
79 |
+
"""Create radar chart comparing multiple metrics across models."""
|
80 |
+
|
81 |
+
if df.empty:
|
82 |
+
return go.Figure().add_annotation(text="No data available", x=0.5, y=0.5)
|
83 |
+
|
84 |
+
# Select models to compare
|
85 |
+
if models is None:
|
86 |
+
selected_models = df.head(max_models)
|
87 |
+
else:
|
88 |
+
selected_models = df[df['model_name'].isin(models)].head(max_models)
|
89 |
+
|
90 |
+
if len(selected_models) == 0:
|
91 |
+
return go.Figure().add_annotation(text="No models found", x=0.5, y=0.5)
|
92 |
+
|
93 |
+
# Metrics to include in radar chart
|
94 |
+
metrics = ['quality_score', 'bleu', 'chrf', 'rouge1', 'rougeL']
|
95 |
+
metric_labels = ['Quality Score', 'BLEU (/100)', 'ChrF', 'ROUGE-1', 'ROUGE-L']
|
96 |
+
|
97 |
+
fig = go.Figure()
|
98 |
+
|
99 |
+
colors = px.colors.qualitative.Set1[:len(selected_models)]
|
100 |
+
|
101 |
+
for i, (_, model) in enumerate(selected_models.iterrows()):
|
102 |
+
# Normalize BLEU to 0-1 scale for radar chart
|
103 |
+
values = []
|
104 |
+
for metric in metrics:
|
105 |
+
value = model[metric]
|
106 |
+
if metric == 'bleu':
|
107 |
+
value = value / 100.0 # Normalize BLEU
|
108 |
+
values.append(value)
|
109 |
+
|
110 |
+
# Close the radar chart
|
111 |
+
values += values[:1]
|
112 |
+
metric_labels_closed = metric_labels + [metric_labels[0]]
|
113 |
+
|
114 |
+
fig.add_trace(go.Scatterpolar(
|
115 |
+
r=values,
|
116 |
+
theta=metric_labels_closed,
|
117 |
+
fill='toself',
|
118 |
+
name=model['model_name'],
|
119 |
+
line_color=colors[i % len(colors)],
|
120 |
+
fillcolor=colors[i % len(colors)],
|
121 |
+
opacity=0.6
|
122 |
+
))
|
123 |
+
|
124 |
+
fig.update_layout(
|
125 |
+
polar=dict(
|
126 |
+
radialaxis=dict(
|
127 |
+
visible=True,
|
128 |
+
range=[0, 1]
|
129 |
+
)
|
130 |
+
),
|
131 |
+
showlegend=True,
|
132 |
+
title="π Multi-Metric Model Comparison",
|
133 |
+
height=600
|
134 |
+
)
|
135 |
+
|
136 |
+
return fig
|
137 |
+
|
138 |
+
def create_language_pair_heatmap(results_dict: Dict, metric: str = 'quality_score') -> go.Figure:
|
139 |
+
"""Create heatmap showing performance across language pairs."""
|
140 |
+
|
141 |
+
if not results_dict or 'pair_metrics' not in results_dict:
|
142 |
+
return go.Figure().add_annotation(text="No language pair data available", x=0.5, y=0.5)
|
143 |
+
|
144 |
+
pair_metrics = results_dict['pair_metrics']
|
145 |
+
|
146 |
+
# Create matrix for heatmap
|
147 |
+
languages = ALL_UG40_LANGUAGES
|
148 |
+
matrix = np.zeros((len(languages), len(languages)))
|
149 |
+
|
150 |
+
for i, src_lang in enumerate(languages):
|
151 |
+
for j, tgt_lang in enumerate(languages):
|
152 |
+
if src_lang != tgt_lang:
|
153 |
+
pair_key = f"{src_lang}_to_{tgt_lang}"
|
154 |
+
if pair_key in pair_metrics and metric in pair_metrics[pair_key]:
|
155 |
+
matrix[i, j] = pair_metrics[pair_key][metric]
|
156 |
+
else:
|
157 |
+
matrix[i, j] = np.nan
|
158 |
+
else:
|
159 |
+
matrix[i, j] = np.nan
|
160 |
+
|
161 |
+
# Create language labels
|
162 |
+
lang_labels = [LANGUAGE_NAMES.get(lang, lang) for lang in languages]
|
163 |
+
|
164 |
+
fig = go.Figure(data=go.Heatmap(
|
165 |
+
z=matrix,
|
166 |
+
x=lang_labels,
|
167 |
+
y=lang_labels,
|
168 |
+
colorscale='Viridis',
|
169 |
+
showscale=True,
|
170 |
+
colorbar=dict(title=metric.replace('_', ' ').title()),
|
171 |
+
hoverinfotemplate=(
|
172 |
+
"Source: %{y}<br>" +
|
173 |
+
"Target: %{x}<br>" +
|
174 |
+
f"{metric.replace('_', ' ').title()}: %{{z:.3f}}<br>" +
|
175 |
+
"<extra></extra>"
|
176 |
+
)
|
177 |
+
))
|
178 |
+
|
179 |
+
fig.update_layout(
|
180 |
+
title=f"πΊοΈ Language Pair Performance - {metric.replace('_', ' ').title()}",
|
181 |
+
xaxis_title="Target Language",
|
182 |
+
yaxis_title="Source Language",
|
183 |
+
height=600,
|
184 |
+
width=700
|
185 |
+
)
|
186 |
+
|
187 |
+
return fig
|
188 |
+
|
189 |
+
def create_coverage_analysis_plot(df: pd.DataFrame) -> go.Figure:
|
190 |
+
"""Create plot analyzing test set coverage across submissions."""
|
191 |
+
|
192 |
+
if df.empty:
|
193 |
+
return go.Figure().add_annotation(text="No data available", x=0.5, y=0.5)
|
194 |
+
|
195 |
+
fig = make_subplots(
|
196 |
+
rows=2, cols=2,
|
197 |
+
subplot_titles=(
|
198 |
+
"Coverage Distribution",
|
199 |
+
"Language Pairs Covered",
|
200 |
+
"Sample Count vs Quality",
|
201 |
+
"Google Comparable Coverage"
|
202 |
+
),
|
203 |
+
specs=[[{"type": "bar"}, {"type": "scatter"}],
|
204 |
+
[{"type": "scatter"}, {"type": "bar"}]]
|
205 |
+
)
|
206 |
+
|
207 |
+
# Coverage distribution
|
208 |
+
coverage_bins = pd.cut(df['coverage_rate'],
|
209 |
+
bins=[0, 0.5, 0.8, 0.9, 0.95, 1.0],
|
210 |
+
labels=['<50%', '50-80%', '80-90%', '90-95%', '95-100%'])
|
211 |
+
coverage_counts = coverage_bins.value_counts()
|
212 |
+
|
213 |
+
fig.add_trace(
|
214 |
+
go.Bar(x=coverage_counts.index, y=coverage_counts.values, name="Coverage"),
|
215 |
+
row=1, col=1
|
216 |
+
)
|
217 |
+
|
218 |
+
# Language pairs covered vs quality
|
219 |
+
fig.add_trace(
|
220 |
+
go.Scatter(
|
221 |
+
x=df['language_pairs_covered'],
|
222 |
+
y=df['quality_score'],
|
223 |
+
mode='markers',
|
224 |
+
text=df['model_name'],
|
225 |
+
name="Quality vs Coverage"
|
226 |
+
),
|
227 |
+
row=1, col=2
|
228 |
+
)
|
229 |
+
|
230 |
+
# Sample count vs quality
|
231 |
+
fig.add_trace(
|
232 |
+
go.Scatter(
|
233 |
+
x=df['total_samples'],
|
234 |
+
y=df['quality_score'],
|
235 |
+
mode='markers',
|
236 |
+
text=df['model_name'],
|
237 |
+
name="Quality vs Samples"
|
238 |
+
),
|
239 |
+
row=2, col=1
|
240 |
+
)
|
241 |
+
|
242 |
+
# Google comparable coverage
|
243 |
+
google_coverage = df['google_pairs_covered'].value_counts().sort_index()
|
244 |
+
fig.add_trace(
|
245 |
+
go.Bar(x=google_coverage.index, y=google_coverage.values, name="Google Coverage"),
|
246 |
+
row=2, col=2
|
247 |
+
)
|
248 |
+
|
249 |
+
fig.update_layout(
|
250 |
+
title="π Test Set Coverage Analysis",
|
251 |
+
height=800,
|
252 |
+
showlegend=False
|
253 |
+
)
|
254 |
+
|
255 |
+
return fig
|
256 |
+
|
257 |
+
def create_model_performance_timeline(df: pd.DataFrame) -> go.Figure:
|
258 |
+
"""Create timeline showing model performance over time."""
|
259 |
+
|
260 |
+
if df.empty:
|
261 |
+
return go.Figure().add_annotation(text="No data available", x=0.5, y=0.5)
|
262 |
+
|
263 |
+
# Convert submission_date to datetime
|
264 |
+
df_copy = df.copy()
|
265 |
+
df_copy['submission_date'] = pd.to_datetime(df_copy['submission_date'])
|
266 |
+
df_copy = df_copy.sort_values('submission_date')
|
267 |
+
|
268 |
+
fig = go.Figure()
|
269 |
+
|
270 |
+
# Add scatter plot for each submission
|
271 |
+
fig.add_trace(go.Scatter(
|
272 |
+
x=df_copy['submission_date'],
|
273 |
+
y=df_copy['quality_score'],
|
274 |
+
mode='markers+lines',
|
275 |
+
marker=dict(
|
276 |
+
size=10,
|
277 |
+
color=df_copy['quality_score'],
|
278 |
+
colorscale='Viridis',
|
279 |
+
showscale=True,
|
280 |
+
colorbar=dict(title="Quality Score")
|
281 |
+
),
|
282 |
+
text=df_copy['model_name'],
|
283 |
+
hovertemplate=(
|
284 |
+
"<b>%{text}</b><br>" +
|
285 |
+
"Date: %{x}<br>" +
|
286 |
+
"Quality Score: %{y:.4f}<br>" +
|
287 |
+
"<extra></extra>"
|
288 |
+
),
|
289 |
+
name="Models"
|
290 |
+
))
|
291 |
+
|
292 |
+
# Add trend line
|
293 |
+
if len(df_copy) > 1:
|
294 |
+
z = np.polyfit(range(len(df_copy)), df_copy['quality_score'], 1)
|
295 |
+
trend_line = np.poly1d(z)(range(len(df_copy)))
|
296 |
+
|
297 |
+
fig.add_trace(go.Scatter(
|
298 |
+
x=df_copy['submission_date'],
|
299 |
+
y=trend_line,
|
300 |
+
mode='lines',
|
301 |
+
line=dict(dash='dash', color='red'),
|
302 |
+
name="Trend",
|
303 |
+
hoverinfo='skip'
|
304 |
+
))
|
305 |
+
|
306 |
+
fig.update_layout(
|
307 |
+
title="π
Model Performance Timeline",
|
308 |
+
xaxis_title="Submission Date",
|
309 |
+
yaxis_title="Quality Score",
|
310 |
+
height=500
|
311 |
+
)
|
312 |
+
|
313 |
+
return fig
|
314 |
+
|
315 |
+
def create_google_comparison_plot(df: pd.DataFrame) -> go.Figure:
|
316 |
+
"""Create plot comparing models on Google Translate-comparable language pairs."""
|
317 |
+
|
318 |
+
# Filter models that have Google comparable results
|
319 |
+
google_models = df[df['google_pairs_covered'] > 0].copy()
|
320 |
+
|
321 |
+
if google_models.empty:
|
322 |
+
return go.Figure().add_annotation(
|
323 |
+
text="No models with Google Translate comparable results",
|
324 |
+
x=0.5, y=0.5
|
325 |
+
)
|
326 |
+
|
327 |
+
fig = go.Figure()
|
328 |
+
|
329 |
+
# Create scatter plot
|
330 |
+
fig.add_trace(go.Scatter(
|
331 |
+
x=google_models['google_bleu'],
|
332 |
+
y=google_models['google_quality_score'],
|
333 |
+
mode='markers+text',
|
334 |
+
marker=dict(
|
335 |
+
size=12,
|
336 |
+
color=google_models['google_chrf'],
|
337 |
+
colorscale='Plasma',
|
338 |
+
showscale=True,
|
339 |
+
colorbar=dict(title="ChrF Score")
|
340 |
+
),
|
341 |
+
text=google_models['model_name'],
|
342 |
+
textposition="top center",
|
343 |
+
hovertemplate=(
|
344 |
+
"<b>%{text}</b><br>" +
|
345 |
+
"BLEU: %{x:.2f}<br>" +
|
346 |
+
"Quality: %{y:.4f}<br>" +
|
347 |
+
"ChrF: %{marker.color:.4f}<br>" +
|
348 |
+
"<extra></extra>"
|
349 |
+
),
|
350 |
+
name="Models"
|
351 |
+
))
|
352 |
+
|
353 |
+
fig.update_layout(
|
354 |
+
title="π€ Google Translate Comparable Performance",
|
355 |
+
xaxis_title="BLEU Score",
|
356 |
+
yaxis_title="Quality Score",
|
357 |
+
height=500
|
358 |
+
)
|
359 |
+
|
360 |
+
return fig
|
361 |
+
|
362 |
+
def create_detailed_model_analysis(model_results: Dict, model_name: str) -> go.Figure:
|
363 |
+
"""Create detailed analysis plot for a specific model."""
|
364 |
+
|
365 |
+
if not model_results or 'pair_metrics' not in model_results:
|
366 |
+
return go.Figure().add_annotation(text="No detailed results available", x=0.5, y=0.5)
|
367 |
+
|
368 |
+
pair_metrics = model_results['pair_metrics']
|
369 |
+
|
370 |
+
# Extract language pair data
|
371 |
+
pairs = []
|
372 |
+
bleu_scores = []
|
373 |
+
quality_scores = []
|
374 |
+
sample_counts = []
|
375 |
+
google_comparable = []
|
376 |
+
|
377 |
+
for pair_key, metrics in pair_metrics.items():
|
378 |
+
if 'sample_count' in metrics and metrics['sample_count'] > 0:
|
379 |
+
src, tgt = pair_key.split('_to_')
|
380 |
+
pair_label = f"{LANGUAGE_NAMES.get(src, src)} β {LANGUAGE_NAMES.get(tgt, tgt)}"
|
381 |
+
|
382 |
+
pairs.append(pair_label)
|
383 |
+
bleu_scores.append(metrics.get('bleu', 0))
|
384 |
+
quality_scores.append(metrics.get('quality_score', 0))
|
385 |
+
sample_counts.append(metrics.get('sample_count', 0))
|
386 |
+
|
387 |
+
is_google = (src in GOOGLE_SUPPORTED_LANGUAGES and tgt in GOOGLE_SUPPORTED_LANGUAGES)
|
388 |
+
google_comparable.append(is_google)
|
389 |
+
|
390 |
+
if not pairs:
|
391 |
+
return go.Figure().add_annotation(text="No language pair data found", x=0.5, y=0.5)
|
392 |
+
|
393 |
+
# Create subplot
|
394 |
+
fig = make_subplots(
|
395 |
+
rows=2, cols=1,
|
396 |
+
subplot_titles=(
|
397 |
+
f"{model_name} - BLEU Scores by Language Pair",
|
398 |
+
f"{model_name} - Quality Scores by Language Pair"
|
399 |
+
),
|
400 |
+
vertical_spacing=0.1
|
401 |
+
)
|
402 |
+
|
403 |
+
# Color code by Google comparable
|
404 |
+
colors = ['#1f77b4' if gc else '#ff7f0e' for gc in google_comparable]
|
405 |
+
|
406 |
+
# BLEU scores
|
407 |
+
fig.add_trace(
|
408 |
+
go.Bar(
|
409 |
+
x=pairs,
|
410 |
+
y=bleu_scores,
|
411 |
+
marker_color=colors,
|
412 |
+
name="BLEU",
|
413 |
+
text=[f"{score:.1f}" for score in bleu_scores],
|
414 |
+
textposition='auto'
|
415 |
+
),
|
416 |
+
row=1, col=1
|
417 |
+
)
|
418 |
+
|
419 |
+
# Quality scores
|
420 |
+
fig.add_trace(
|
421 |
+
go.Bar(
|
422 |
+
x=pairs,
|
423 |
+
y=quality_scores,
|
424 |
+
marker_color=colors,
|
425 |
+
name="Quality",
|
426 |
+
text=[f"{score:.3f}" for score in quality_scores],
|
427 |
+
textposition='auto',
|
428 |
+
showlegend=False
|
429 |
+
),
|
430 |
+
row=2, col=1
|
431 |
+
)
|
432 |
+
|
433 |
+
fig.update_layout(
|
434 |
+
height=800,
|
435 |
+
title=f"π Detailed Analysis: {model_name}",
|
436 |
+
showlegend=True
|
437 |
+
)
|
438 |
+
|
439 |
+
# Rotate x-axis labels
|
440 |
+
fig.update_xaxes(tickangle=45)
|
441 |
+
|
442 |
+
# Add legend for colors
|
443 |
+
fig.add_trace(
|
444 |
+
go.Scatter(
|
445 |
+
x=[None], y=[None],
|
446 |
+
mode='markers',
|
447 |
+
marker=dict(size=10, color='#1f77b4'),
|
448 |
+
name="Google Comparable",
|
449 |
+
showlegend=True
|
450 |
+
)
|
451 |
+
)
|
452 |
+
|
453 |
+
fig.add_trace(
|
454 |
+
go.Scatter(
|
455 |
+
x=[None], y=[None],
|
456 |
+
mode='markers',
|
457 |
+
marker=dict(size=10, color='#ff7f0e'),
|
458 |
+
name="UG40 Only",
|
459 |
+
showlegend=True
|
460 |
+
)
|
461 |
+
)
|
462 |
+
|
463 |
+
return fig
|
464 |
+
|
465 |
+
def create_submission_summary_plot(validation_info: Dict, evaluation_results: Dict) -> go.Figure:
|
466 |
+
"""Create summary plot for a new submission."""
|
467 |
+
|
468 |
+
fig = make_subplots(
|
469 |
+
rows=2, cols=2,
|
470 |
+
subplot_titles=(
|
471 |
+
"Coverage by Language Pair",
|
472 |
+
"Primary Metrics",
|
473 |
+
"Error Analysis",
|
474 |
+
"Sample Distribution"
|
475 |
+
),
|
476 |
+
specs=[[{"type": "bar"}, {"type": "bar"}],
|
477 |
+
[{"type": "bar"}, {"type": "pie"}]]
|
478 |
+
)
|
479 |
+
|
480 |
+
# Coverage by language pair
|
481 |
+
if 'pair_coverage' in validation_info:
|
482 |
+
pair_data = validation_info['pair_coverage']
|
483 |
+
pairs = list(pair_data.keys())[:10] # Top 10 pairs
|
484 |
+
coverage_rates = [pair_data[p]['coverage_rate'] for p in pairs]
|
485 |
+
|
486 |
+
fig.add_trace(
|
487 |
+
go.Bar(x=pairs, y=coverage_rates, name="Coverage"),
|
488 |
+
row=1, col=1
|
489 |
+
)
|
490 |
+
|
491 |
+
# Primary metrics
|
492 |
+
if 'summary' in evaluation_results:
|
493 |
+
metrics_data = evaluation_results['summary']['primary_metrics']
|
494 |
+
metric_names = list(metrics_data.keys())
|
495 |
+
metric_values = list(metrics_data.values())
|
496 |
+
|
497 |
+
fig.add_trace(
|
498 |
+
go.Bar(x=metric_names, y=metric_values, name="Metrics"),
|
499 |
+
row=1, col=2
|
500 |
+
)
|
501 |
+
|
502 |
+
# Error analysis (CER, WER)
|
503 |
+
if 'averages' in evaluation_results:
|
504 |
+
error_metrics = ['cer', 'wer']
|
505 |
+
error_values = [evaluation_results['averages'].get(m, 0) for m in error_metrics]
|
506 |
+
|
507 |
+
fig.add_trace(
|
508 |
+
go.Bar(x=error_metrics, y=error_values, name="Errors"),
|
509 |
+
row=2, col=1
|
510 |
+
)
|
511 |
+
|
512 |
+
# Sample distribution (placeholder)
|
513 |
+
fig.add_trace(
|
514 |
+
go.Pie(
|
515 |
+
labels=["Evaluated", "Missing"],
|
516 |
+
values=[validation_info.get('coverage', 0.8) * 100,
|
517 |
+
(1 - validation_info.get('coverage', 0.8)) * 100],
|
518 |
+
name="Samples"
|
519 |
+
),
|
520 |
+
row=2, col=2
|
521 |
+
)
|
522 |
+
|
523 |
+
fig.update_layout(
|
524 |
+
title="π Submission Summary",
|
525 |
+
height=700,
|
526 |
+
showlegend=False
|
527 |
+
)
|
528 |
+
|
529 |
+
return fig
|