Spaces:
Running
Running
Create evaluation.py
Browse files- src/evaluation.py +413 -0
src/evaluation.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# src/evaluation.py
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from tqdm.auto import tqdm
|
5 |
+
from sacrebleu.metrics import BLEU, CHRF
|
6 |
+
from rouge_score import rouge_scorer
|
7 |
+
import Levenshtein
|
8 |
+
from collections import defaultdict
|
9 |
+
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
10 |
+
import salt.constants
|
11 |
+
import datetime
|
12 |
+
import os
|
13 |
+
from google.cloud import translate_v3
|
14 |
+
from config import GOOGLE_LANG_MAP
|
15 |
+
|
16 |
+
def setup_google_translate():
|
17 |
+
"""Setup Google Cloud Translation client if credentials available."""
|
18 |
+
try:
|
19 |
+
# Check if running in HF Space with credentials
|
20 |
+
if os.getenv("GOOGLE_APPLICATION_CREDENTIALS") or os.getenv("GOOGLE_CLOUD_PROJECT"):
|
21 |
+
client = translate_v3.TranslationServiceClient()
|
22 |
+
project_id = os.getenv("GOOGLE_CLOUD_PROJECT", "sb-gcp-project-01")
|
23 |
+
parent = f"projects/{project_id}/locations/global"
|
24 |
+
return client, parent
|
25 |
+
else:
|
26 |
+
print("Google Cloud credentials not found. Google Translate will not be available.")
|
27 |
+
return None, None
|
28 |
+
except Exception as e:
|
29 |
+
print(f"Error setting up Google Translate: {e}")
|
30 |
+
return None, None
|
31 |
+
|
32 |
+
def google_translate_batch(texts, source_langs, target_langs, client, parent):
|
33 |
+
"""Translate using Google Cloud Translation API."""
|
34 |
+
translations = []
|
35 |
+
|
36 |
+
for text, src_lang, tgt_lang in tqdm(zip(texts, source_langs, target_langs),
|
37 |
+
total=len(texts), desc="Google Translate"):
|
38 |
+
try:
|
39 |
+
# Map SALT language codes to Google's format
|
40 |
+
src_google = GOOGLE_LANG_MAP.get(src_lang, src_lang)
|
41 |
+
tgt_google = GOOGLE_LANG_MAP.get(tgt_lang, tgt_lang)
|
42 |
+
|
43 |
+
# Check if language pair is supported
|
44 |
+
supported_langs = ['lg', 'ach', 'sw', 'en']
|
45 |
+
if src_google not in supported_langs or tgt_google not in supported_langs:
|
46 |
+
translations.append(f"[UNSUPPORTED: {src_lang}->{tgt_lang}]")
|
47 |
+
continue
|
48 |
+
|
49 |
+
# Make translation request
|
50 |
+
request = {
|
51 |
+
"parent": parent,
|
52 |
+
"contents": [text],
|
53 |
+
"mime_type": "text/plain",
|
54 |
+
"source_language_code": src_google,
|
55 |
+
"target_language_code": tgt_google,
|
56 |
+
}
|
57 |
+
|
58 |
+
response = client.translate_text(request=request)
|
59 |
+
translation = response.translations[0].translated_text
|
60 |
+
translations.append(translation)
|
61 |
+
|
62 |
+
except Exception as e:
|
63 |
+
print(f"Error translating '{text}': {e}")
|
64 |
+
translations.append(f"[ERROR: {str(e)[:50]}]")
|
65 |
+
|
66 |
+
return translations
|
67 |
+
|
68 |
+
def get_translation_function(model, tokenizer, model_path):
|
69 |
+
"""Get appropriate translation function based on model type."""
|
70 |
+
|
71 |
+
if model_path == 'google-translate':
|
72 |
+
client, parent = setup_google_translate()
|
73 |
+
if client is None:
|
74 |
+
raise Exception("Google Translate credentials not available")
|
75 |
+
|
76 |
+
def translation_fn(texts, from_langs, to_langs):
|
77 |
+
return google_translate_batch(texts, from_langs, to_langs, client, parent)
|
78 |
+
|
79 |
+
return translation_fn
|
80 |
+
|
81 |
+
elif 'gemma' in str(type(model)).lower() or 'gemma' in model_path.lower():
|
82 |
+
return get_gemma_translation_fn(model, tokenizer)
|
83 |
+
|
84 |
+
elif hasattr(model, 'base_model') and hasattr(model.base_model, 'model') and 'Qwen2ForCausalLM' in str(type(model.base_model.model)):
|
85 |
+
return get_qwen_translation_fn(model, tokenizer)
|
86 |
+
|
87 |
+
elif 'm2m_100' in str(type(model)).lower():
|
88 |
+
return get_nllb_translation_fn(model, tokenizer)
|
89 |
+
|
90 |
+
elif hasattr(model, 'base_model') and hasattr(model.base_model, 'model') and 'LlamaForCausalLM' in str(type(model.base_model.model)):
|
91 |
+
return get_llama_translation_fn(model, tokenizer)
|
92 |
+
|
93 |
+
else:
|
94 |
+
# Generic function for other models
|
95 |
+
return get_generic_translation_fn(model, tokenizer)
|
96 |
+
|
97 |
+
def get_gemma_translation_fn(model, tokenizer):
|
98 |
+
"""Translation function for Gemma models."""
|
99 |
+
def translation_fn(texts, from_langs, to_langs):
|
100 |
+
SYSTEM_MESSAGE = 'You are a linguist and translation assistant specialising in Ugandan languages.'
|
101 |
+
translations = []
|
102 |
+
batch_size = 4
|
103 |
+
device = next(model.parameters()).device
|
104 |
+
|
105 |
+
instructions = [
|
106 |
+
f'Translate from {salt.constants.SALT_LANGUAGE_NAMES[from_lang]} '
|
107 |
+
f'to {salt.constants.SALT_LANGUAGE_NAMES[to_lang]}: {text}'
|
108 |
+
for text, from_lang, to_lang in zip(texts, from_langs, to_langs)
|
109 |
+
]
|
110 |
+
|
111 |
+
for i in tqdm(range(0, len(instructions), batch_size), desc="Generating translations"):
|
112 |
+
batch_instructions = instructions[i:i + batch_size]
|
113 |
+
messages_list = [
|
114 |
+
[
|
115 |
+
{"role": "system", "content": SYSTEM_MESSAGE},
|
116 |
+
{"role": "user", "content": instruction}
|
117 |
+
] for instruction in batch_instructions
|
118 |
+
]
|
119 |
+
|
120 |
+
prompts = [
|
121 |
+
tokenizer.apply_chat_template(
|
122 |
+
messages, tokenize=False, add_generation_prompt=True
|
123 |
+
) for messages in messages_list
|
124 |
+
]
|
125 |
+
|
126 |
+
inputs = tokenizer(
|
127 |
+
prompts, return_tensors="pt",
|
128 |
+
padding=True, padding_side='left',
|
129 |
+
max_length=512, truncation=True
|
130 |
+
).to(device)
|
131 |
+
|
132 |
+
with torch.no_grad():
|
133 |
+
outputs = model.generate(
|
134 |
+
**inputs,
|
135 |
+
max_new_tokens=100,
|
136 |
+
temperature=0.5,
|
137 |
+
num_beams=5,
|
138 |
+
do_sample=True,
|
139 |
+
no_repeat_ngram_size=5,
|
140 |
+
pad_token_id=tokenizer.eos_token_id
|
141 |
+
)
|
142 |
+
|
143 |
+
for j in range(len(outputs)):
|
144 |
+
translation = tokenizer.decode(
|
145 |
+
outputs[j, inputs['input_ids'].shape[1]:],
|
146 |
+
skip_special_tokens=True
|
147 |
+
)
|
148 |
+
translations.append(translation)
|
149 |
+
|
150 |
+
return translations
|
151 |
+
|
152 |
+
return translation_fn
|
153 |
+
|
154 |
+
def get_qwen_translation_fn(model, tokenizer):
|
155 |
+
"""Translation function for Qwen models."""
|
156 |
+
def translation_fn(texts, from_langs, to_langs):
|
157 |
+
SYSTEM_MESSAGE = 'You are a Ugandan language assistant.'
|
158 |
+
translations = []
|
159 |
+
batch_size = 8
|
160 |
+
device = next(model.parameters()).device
|
161 |
+
|
162 |
+
instructions = [
|
163 |
+
f'Translate from {salt.constants.SALT_LANGUAGE_NAMES.get(from_lang, from_lang)} '
|
164 |
+
f'to {salt.constants.SALT_LANGUAGE_NAMES.get(to_lang, to_lang)}: {text}'
|
165 |
+
for text, from_lang, to_lang in zip(texts, from_langs, to_langs)
|
166 |
+
]
|
167 |
+
|
168 |
+
for i in tqdm(range(0, len(instructions), batch_size), desc="Generating translations"):
|
169 |
+
batch_instructions = instructions[i:i + batch_size]
|
170 |
+
messages_list = [
|
171 |
+
[
|
172 |
+
{"role": "system", "content": SYSTEM_MESSAGE},
|
173 |
+
{"role": "user", "content": instruction}
|
174 |
+
] for instruction in batch_instructions
|
175 |
+
]
|
176 |
+
|
177 |
+
prompts = [
|
178 |
+
tokenizer.apply_chat_template(
|
179 |
+
messages, tokenize=False, add_generation_prompt=True
|
180 |
+
) for messages in messages_list
|
181 |
+
]
|
182 |
+
|
183 |
+
inputs = tokenizer(
|
184 |
+
prompts, return_tensors="pt",
|
185 |
+
padding=True, padding_side='left', truncation=True
|
186 |
+
).to(device)
|
187 |
+
|
188 |
+
with torch.no_grad():
|
189 |
+
outputs = model.generate(
|
190 |
+
**inputs, max_new_tokens=100,
|
191 |
+
temperature=0.01,
|
192 |
+
pad_token_id=tokenizer.eos_token_id
|
193 |
+
)
|
194 |
+
|
195 |
+
for j in range(len(outputs)):
|
196 |
+
translation = tokenizer.decode(
|
197 |
+
outputs[j, inputs['input_ids'].shape[1]:],
|
198 |
+
skip_special_tokens=True
|
199 |
+
)
|
200 |
+
translations.append(translation)
|
201 |
+
|
202 |
+
return translations
|
203 |
+
|
204 |
+
return translation_fn
|
205 |
+
|
206 |
+
def get_nllb_translation_fn(model, tokenizer):
|
207 |
+
"""Translation function for NLLB models."""
|
208 |
+
def translation_fn(texts, source_langs, target_langs):
|
209 |
+
translations = []
|
210 |
+
language_tokens = salt.constants.SALT_LANGUAGE_TOKENS_NLLB_TRANSLATION
|
211 |
+
device = next(model.parameters()).device
|
212 |
+
|
213 |
+
for text, source_language, target_language in tqdm(
|
214 |
+
zip(texts, source_langs, target_langs), total=len(texts), desc="NLLB Translation"):
|
215 |
+
|
216 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
217 |
+
inputs['input_ids'][0][0] = language_tokens[source_language]
|
218 |
+
|
219 |
+
with torch.no_grad():
|
220 |
+
translated_tokens = model.generate(
|
221 |
+
**inputs,
|
222 |
+
forced_bos_token_id=language_tokens[target_language],
|
223 |
+
max_length=100,
|
224 |
+
num_beams=5,
|
225 |
+
)
|
226 |
+
|
227 |
+
result = tokenizer.batch_decode(
|
228 |
+
translated_tokens, skip_special_tokens=True)[0]
|
229 |
+
translations.append(result)
|
230 |
+
|
231 |
+
return translations
|
232 |
+
|
233 |
+
return translation_fn
|
234 |
+
|
235 |
+
def get_llama_translation_fn(model, tokenizer):
|
236 |
+
"""Translation function for Llama models."""
|
237 |
+
def translation_fn(texts, from_langs, to_langs):
|
238 |
+
DATE_TODAY = datetime.datetime.now().strftime("%d %b %Y")
|
239 |
+
SYSTEM_MESSAGE = ''
|
240 |
+
translations = []
|
241 |
+
batch_size = 8
|
242 |
+
device = next(model.parameters()).device
|
243 |
+
|
244 |
+
instructions = [
|
245 |
+
f'Translate from {salt.constants.SALT_LANGUAGE_NAMES.get(from_lang, from_lang)} '
|
246 |
+
f'to {salt.constants.SALT_LANGUAGE_NAMES.get(to_lang, to_lang)}: {text}'
|
247 |
+
for text, from_lang, to_lang in zip(texts, from_langs, to_langs)
|
248 |
+
]
|
249 |
+
|
250 |
+
for i in tqdm(range(0, len(instructions), batch_size), desc="Llama Translation"):
|
251 |
+
batch_instructions = instructions[i:i + batch_size]
|
252 |
+
messages_list = [
|
253 |
+
[
|
254 |
+
{"role": "system", "content": SYSTEM_MESSAGE},
|
255 |
+
{"role": "user", "content": instruction}
|
256 |
+
] for instruction in batch_instructions
|
257 |
+
]
|
258 |
+
|
259 |
+
prompts = [
|
260 |
+
tokenizer.apply_chat_template(
|
261 |
+
messages, tokenize=False, add_generation_prompt=True,
|
262 |
+
date_string=DATE_TODAY,
|
263 |
+
) for messages in messages_list
|
264 |
+
]
|
265 |
+
|
266 |
+
inputs = tokenizer(
|
267 |
+
prompts, return_tensors="pt",
|
268 |
+
padding=True, padding_side='left',
|
269 |
+
).to(device)
|
270 |
+
|
271 |
+
with torch.no_grad():
|
272 |
+
outputs = model.generate(
|
273 |
+
**inputs, max_new_tokens=100,
|
274 |
+
temperature=0.01,
|
275 |
+
pad_token_id=tokenizer.eos_token_id
|
276 |
+
)
|
277 |
+
|
278 |
+
for j in range(len(outputs)):
|
279 |
+
translation = tokenizer.decode(
|
280 |
+
outputs[j, inputs['input_ids'].shape[1]:],
|
281 |
+
skip_special_tokens=True
|
282 |
+
)
|
283 |
+
translations.append(translation)
|
284 |
+
|
285 |
+
return translations
|
286 |
+
|
287 |
+
return translation_fn
|
288 |
+
|
289 |
+
def get_generic_translation_fn(model, tokenizer):
|
290 |
+
"""Generic translation function for unknown model types."""
|
291 |
+
def translation_fn(texts, from_langs, to_langs):
|
292 |
+
translations = []
|
293 |
+
device = next(model.parameters()).device
|
294 |
+
|
295 |
+
for text, from_lang, to_lang in tqdm(zip(texts, from_langs, to_langs),
|
296 |
+
desc="Generic Translation"):
|
297 |
+
prompt = f"Translate from {from_lang} to {to_lang}: {text}"
|
298 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
299 |
+
|
300 |
+
with torch.no_grad():
|
301 |
+
outputs = model.generate(
|
302 |
+
**inputs,
|
303 |
+
max_new_tokens=100,
|
304 |
+
temperature=0.7,
|
305 |
+
pad_token_id=tokenizer.eos_token_id
|
306 |
+
)
|
307 |
+
|
308 |
+
translation = tokenizer.decode(
|
309 |
+
outputs[0, inputs['input_ids'].shape[1]:],
|
310 |
+
skip_special_tokens=True
|
311 |
+
)
|
312 |
+
translations.append(translation)
|
313 |
+
|
314 |
+
return translations
|
315 |
+
|
316 |
+
return translation_fn
|
317 |
+
|
318 |
+
def calculate_metrics(reference: str, prediction: str) -> dict:
|
319 |
+
"""Calculate multiple translation quality metrics."""
|
320 |
+
bleu = BLEU(effective_order=True)
|
321 |
+
bleu_score = bleu.sentence_score(prediction, [reference]).score
|
322 |
+
|
323 |
+
chrf = CHRF()
|
324 |
+
chrf_score = chrf.sentence_score(prediction, [reference]).score / 100.0
|
325 |
+
|
326 |
+
cer = Levenshtein.distance(reference, prediction) / max(len(reference), 1)
|
327 |
+
|
328 |
+
ref_words = reference.split()
|
329 |
+
pred_words = prediction.split()
|
330 |
+
wer = Levenshtein.distance(ref_words, pred_words) / max(len(ref_words), 1)
|
331 |
+
|
332 |
+
len_ratio = len(prediction) / max(len(reference), 1)
|
333 |
+
|
334 |
+
metrics = {
|
335 |
+
"bleu": bleu_score,
|
336 |
+
"chrf": chrf_score,
|
337 |
+
"cer": cer,
|
338 |
+
"wer": wer,
|
339 |
+
"len_ratio": len_ratio,
|
340 |
+
}
|
341 |
+
|
342 |
+
try:
|
343 |
+
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
344 |
+
rouge_scores = scorer.score(reference, prediction)
|
345 |
+
|
346 |
+
metrics["rouge1"] = rouge_scores['rouge1'].fmeasure
|
347 |
+
metrics["rouge2"] = rouge_scores['rouge2'].fmeasure
|
348 |
+
metrics["rougeL"] = rouge_scores['rougeL'].fmeasure
|
349 |
+
|
350 |
+
metrics["quality_score"] = (
|
351 |
+
bleu_score/100 +
|
352 |
+
chrf_score +
|
353 |
+
(1-cer) +
|
354 |
+
(1-wer) +
|
355 |
+
rouge_scores['rouge1'].fmeasure +
|
356 |
+
rouge_scores['rougeL'].fmeasure
|
357 |
+
) / 6
|
358 |
+
except Exception as e:
|
359 |
+
print(f"Error calculating ROUGE metrics: {e}")
|
360 |
+
metrics["quality_score"] = (bleu_score/100 + chrf_score + (1-cer) + (1-wer)) / 4
|
361 |
+
|
362 |
+
return metrics
|
363 |
+
|
364 |
+
def evaluate_model_full(model, tokenizer, model_path: str, test_data) -> dict:
|
365 |
+
"""Complete model evaluation pipeline."""
|
366 |
+
|
367 |
+
# Get translation function
|
368 |
+
translation_fn = get_translation_function(model, tokenizer, model_path)
|
369 |
+
|
370 |
+
# Generate predictions
|
371 |
+
print("Generating translations...")
|
372 |
+
predictions = translation_fn(
|
373 |
+
list(test_data['source']),
|
374 |
+
list(test_data['source.language']),
|
375 |
+
list(test_data['target.language']),
|
376 |
+
)
|
377 |
+
|
378 |
+
# Calculate metrics by language pair
|
379 |
+
print("Calculating metrics...")
|
380 |
+
translation_subsets = defaultdict(list)
|
381 |
+
for idx, row in test_data.iterrows():
|
382 |
+
direction = row['source.language'] + '_to_' + row['target.language']
|
383 |
+
row_dict = dict(row)
|
384 |
+
row_dict['prediction'] = predictions[idx]
|
385 |
+
translation_subsets[direction].append(row_dict)
|
386 |
+
|
387 |
+
normalizer = BasicTextNormalizer()
|
388 |
+
grouped_metrics = defaultdict(dict)
|
389 |
+
|
390 |
+
for subset in translation_subsets.keys():
|
391 |
+
subset_metrics = defaultdict(list)
|
392 |
+
for example in translation_subsets[subset]:
|
393 |
+
prediction = normalizer(str(example['prediction']))
|
394 |
+
reference = normalizer(example['target'])
|
395 |
+
metrics = calculate_metrics(reference, prediction)
|
396 |
+
for m in metrics.keys():
|
397 |
+
subset_metrics[m].append(metrics[m])
|
398 |
+
|
399 |
+
for m in subset_metrics.keys():
|
400 |
+
if subset_metrics[m]: # Check if list is not empty
|
401 |
+
grouped_metrics[subset][m] = float(np.mean(subset_metrics[m]))
|
402 |
+
|
403 |
+
# Calculate overall averages
|
404 |
+
all_metrics = list(grouped_metrics.values())[0].keys() if grouped_metrics else []
|
405 |
+
for m in all_metrics:
|
406 |
+
metric_values = []
|
407 |
+
for subset in translation_subsets.keys():
|
408 |
+
if m in grouped_metrics[subset]:
|
409 |
+
metric_values.append(grouped_metrics[subset][m])
|
410 |
+
if metric_values:
|
411 |
+
grouped_metrics['averages'][m] = float(np.mean(metric_values))
|
412 |
+
|
413 |
+
return dict(grouped_metrics)
|