Spaces:
Sleeping
Sleeping
Update src/evaluation.py
Browse files- src/evaluation.py +543 -336
src/evaluation.py
CHANGED
@@ -6,414 +6,621 @@ from rouge_score import rouge_scorer
|
|
6 |
import Levenshtein
|
7 |
from collections import defaultdict
|
8 |
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
9 |
-
from typing import Dict, List, Tuple
|
10 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from src.utils import get_all_language_pairs, get_google_comparable_pairs
|
12 |
|
|
|
|
|
|
|
13 |
def calculate_sentence_metrics(reference: str, prediction: str) -> Dict[str, float]:
|
14 |
-
"""Calculate all metrics for a single sentence pair
|
15 |
-
|
16 |
# Handle empty predictions
|
17 |
if not prediction or not isinstance(prediction, str):
|
18 |
prediction = ""
|
19 |
-
|
20 |
if not reference or not isinstance(reference, str):
|
21 |
reference = ""
|
22 |
-
|
23 |
# Normalize texts
|
24 |
normalizer = BasicTextNormalizer()
|
25 |
pred_norm = normalizer(prediction)
|
26 |
ref_norm = normalizer(reference)
|
27 |
-
|
28 |
metrics = {}
|
29 |
-
|
30 |
-
# BLEU score (
|
31 |
try:
|
32 |
bleu = BLEU(effective_order=True)
|
33 |
-
metrics[
|
34 |
except:
|
35 |
-
metrics[
|
36 |
-
|
37 |
# ChrF score (normalize to 0-1)
|
38 |
try:
|
39 |
chrf = CHRF()
|
40 |
-
metrics[
|
41 |
except:
|
42 |
-
metrics[
|
43 |
-
|
44 |
# Character Error Rate (CER)
|
45 |
try:
|
46 |
if len(ref_norm) > 0:
|
47 |
-
metrics[
|
48 |
else:
|
49 |
-
metrics[
|
50 |
except:
|
51 |
-
metrics[
|
52 |
-
|
53 |
# Word Error Rate (WER)
|
54 |
try:
|
55 |
ref_words = ref_norm.split()
|
56 |
pred_words = pred_norm.split()
|
57 |
if len(ref_words) > 0:
|
58 |
-
metrics[
|
|
|
|
|
59 |
else:
|
60 |
-
metrics[
|
61 |
except:
|
62 |
-
metrics[
|
63 |
-
|
64 |
# Length ratio
|
65 |
try:
|
66 |
if len(ref_norm) > 0:
|
67 |
-
metrics[
|
68 |
else:
|
69 |
-
metrics[
|
70 |
except:
|
71 |
-
metrics[
|
72 |
-
|
73 |
# ROUGE scores
|
74 |
try:
|
75 |
-
scorer = rouge_scorer.RougeScorer(
|
|
|
|
|
76 |
rouge_scores = scorer.score(ref_norm, pred_norm)
|
77 |
-
|
78 |
-
metrics[
|
79 |
-
metrics[
|
80 |
-
metrics[
|
81 |
except:
|
82 |
-
metrics[
|
83 |
-
metrics[
|
84 |
-
metrics[
|
85 |
-
|
86 |
-
# Quality score (composite metric)
|
87 |
try:
|
88 |
quality_components = [
|
89 |
-
metrics[
|
90 |
-
metrics[
|
91 |
-
1.0 - min(metrics[
|
92 |
-
1.0 - min(metrics[
|
93 |
-
metrics[
|
94 |
-
metrics[
|
95 |
]
|
96 |
-
metrics[
|
97 |
-
except
|
98 |
-
|
99 |
-
|
100 |
-
try:
|
101 |
-
fallback_components = [
|
102 |
-
metrics['bleu'] / 100.0,
|
103 |
-
metrics['chrf'],
|
104 |
-
1.0 - min(metrics['cer'], 1.0),
|
105 |
-
1.0 - min(metrics['wer'], 1.0)
|
106 |
-
]
|
107 |
-
metrics['quality_score'] = np.mean(fallback_components)
|
108 |
-
except:
|
109 |
-
metrics['quality_score'] = 0.0
|
110 |
-
|
111 |
return metrics
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
)
|
125 |
-
|
126 |
if len(merged) == 0:
|
127 |
return {
|
128 |
-
|
129 |
-
|
|
|
130 |
}
|
131 |
-
|
132 |
-
print(f"Evaluating {len(merged)} samples...")
|
133 |
-
|
134 |
# Calculate metrics for each sample
|
135 |
sample_metrics = []
|
136 |
for idx, row in merged.iterrows():
|
137 |
-
metrics = calculate_sentence_metrics(row[
|
138 |
-
metrics[
|
139 |
-
metrics[
|
140 |
-
metrics[
|
141 |
-
metrics['google_comparable'] = row.get('google_comparable', False)
|
142 |
sample_metrics.append(metrics)
|
143 |
-
|
144 |
sample_df = pd.DataFrame(sample_metrics)
|
145 |
-
|
146 |
-
# Aggregate by language pairs
|
147 |
pair_metrics = {}
|
148 |
overall_metrics = defaultdict(list)
|
149 |
-
|
150 |
-
|
151 |
# Calculate metrics for each language pair
|
152 |
-
for src_lang in
|
153 |
-
for tgt_lang in
|
154 |
-
if src_lang
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
]
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
for metric in overall_metrics:
|
186 |
if overall_metrics[metric]:
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
# Calculate Google comparable averages
|
192 |
-
google_averages = {}
|
193 |
-
for metric in google_comparable_metrics:
|
194 |
-
if google_comparable_metrics[metric]:
|
195 |
-
google_averages[metric] = float(np.mean(google_comparable_metrics[metric]))
|
196 |
-
else:
|
197 |
-
google_averages[metric] = 0.0
|
198 |
-
|
199 |
# Generate evaluation summary
|
200 |
summary = {
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
212 |
}
|
213 |
-
|
214 |
return {
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
222 |
}
|
223 |
|
224 |
-
|
225 |
-
def
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
}
|
241 |
-
|
242 |
-
#
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
}
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
report = []
|
307 |
-
|
308 |
# Header
|
309 |
-
report.append(f"
|
310 |
-
report.append("")
|
311 |
-
|
312 |
-
# Summary
|
313 |
-
summary = results['summary']
|
314 |
-
report.append("### π Summary")
|
315 |
-
report.append(f"- **Total Samples Evaluated**: {summary['total_samples']:,}")
|
316 |
-
report.append(f"- **Language Pairs Covered**: {summary['language_pairs_covered']}")
|
317 |
-
report.append(f"- **Google Comparable Pairs**: {summary['google_comparable_pairs']}")
|
318 |
-
report.append("")
|
319 |
-
|
320 |
-
# Primary metrics
|
321 |
-
report.append("### π― Primary Metrics")
|
322 |
-
for metric, value in summary['primary_metrics'].items():
|
323 |
-
formatted_value = f"{value:.4f}" if metric != 'bleu' else f"{value:.2f}"
|
324 |
-
report.append(f"- **{metric.upper()}**: {formatted_value}")
|
325 |
-
|
326 |
-
# Quality ranking (if comparison available)
|
327 |
-
if comparison and comparison.get('comparison_available'):
|
328 |
-
quality_comp = comparison['overall_comparison'].get('quality_score', {})
|
329 |
-
if quality_comp:
|
330 |
-
improvement = quality_comp.get('improvement', 0)
|
331 |
-
if improvement > 0.01:
|
332 |
-
report.append(f" - π’ **{improvement:.3f}** better than baseline")
|
333 |
-
elif improvement < -0.01:
|
334 |
-
report.append(f" - π΄ **{abs(improvement):.3f}** worse than baseline")
|
335 |
-
else:
|
336 |
-
report.append(f" - π‘ Similar to baseline")
|
337 |
-
|
338 |
report.append("")
|
339 |
-
|
340 |
-
#
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
|
|
345 |
report.append("")
|
346 |
-
|
347 |
-
#
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
)
|
356 |
-
|
357 |
-
|
358 |
-
report.append("### π Best Performing Language Pairs")
|
359 |
-
for pair, score in sorted_pairs[:5]:
|
360 |
-
src, tgt = pair.replace('_to_', ' β ').split(' β ')
|
361 |
-
report.append(f"- **{src} β {tgt}**: {score:.3f}")
|
362 |
-
|
363 |
-
if len(sorted_pairs) > 5:
|
364 |
-
report.append("")
|
365 |
-
report.append("### π Challenging Language Pairs")
|
366 |
-
for pair, score in sorted_pairs[-3:]:
|
367 |
-
src, tgt = pair.replace('_to_', ' β ').split(' β ')
|
368 |
-
report.append(f"- **{src} β {tgt}**: {score:.3f}")
|
369 |
-
|
370 |
-
# Comparison with baseline
|
371 |
-
if comparison and comparison.get('comparison_available'):
|
372 |
report.append("")
|
373 |
-
report.append("### π Comparison with Baseline")
|
374 |
-
|
375 |
-
better_count = len(comparison.get('better_pairs', []))
|
376 |
-
worse_count = len(comparison.get('worse_pairs', []))
|
377 |
-
total_comparable = len(comparison.get('pair_comparisons', {}))
|
378 |
-
|
379 |
-
if total_comparable > 0:
|
380 |
-
report.append(f"- **Better than baseline**: {better_count}/{total_comparable} pairs")
|
381 |
-
report.append(f"- **Worse than baseline**: {worse_count}/{total_comparable} pairs")
|
382 |
-
|
383 |
-
if comparison['better_pairs']:
|
384 |
-
report.append(" - Strong pairs: " + ", ".join(comparison['better_pairs'][:3]))
|
385 |
-
|
386 |
-
if comparison['worse_pairs']:
|
387 |
-
report.append(" - Weak pairs: " + ", ".join(comparison['worse_pairs'][:3]))
|
388 |
-
|
389 |
-
return "\n".join(report)
|
390 |
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import Levenshtein
|
7 |
from collections import defaultdict
|
8 |
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
9 |
+
from typing import Dict, List, Tuple, Optional
|
10 |
+
from scipy import stats
|
11 |
+
from scipy.stats import bootstrap
|
12 |
+
import warnings
|
13 |
+
from config import (
|
14 |
+
ALL_UG40_LANGUAGES,
|
15 |
+
GOOGLE_SUPPORTED_LANGUAGES,
|
16 |
+
METRICS_CONFIG,
|
17 |
+
STATISTICAL_CONFIG,
|
18 |
+
EVALUATION_TRACKS,
|
19 |
+
MODEL_CATEGORIES,
|
20 |
+
)
|
21 |
from src.utils import get_all_language_pairs, get_google_comparable_pairs
|
22 |
|
23 |
+
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
24 |
+
|
25 |
+
|
26 |
def calculate_sentence_metrics(reference: str, prediction: str) -> Dict[str, float]:
|
27 |
+
"""Calculate all metrics for a single sentence pair with robust error handling."""
|
28 |
+
|
29 |
# Handle empty predictions
|
30 |
if not prediction or not isinstance(prediction, str):
|
31 |
prediction = ""
|
32 |
+
|
33 |
if not reference or not isinstance(reference, str):
|
34 |
reference = ""
|
35 |
+
|
36 |
# Normalize texts
|
37 |
normalizer = BasicTextNormalizer()
|
38 |
pred_norm = normalizer(prediction)
|
39 |
ref_norm = normalizer(reference)
|
40 |
+
|
41 |
metrics = {}
|
42 |
+
|
43 |
+
# BLEU score (0-100 scale)
|
44 |
try:
|
45 |
bleu = BLEU(effective_order=True)
|
46 |
+
metrics["bleu"] = bleu.sentence_score(pred_norm, [ref_norm]).score
|
47 |
except:
|
48 |
+
metrics["bleu"] = 0.0
|
49 |
+
|
50 |
# ChrF score (normalize to 0-1)
|
51 |
try:
|
52 |
chrf = CHRF()
|
53 |
+
metrics["chrf"] = chrf.sentence_score(pred_norm, [ref_norm]).score / 100.0
|
54 |
except:
|
55 |
+
metrics["chrf"] = 0.0
|
56 |
+
|
57 |
# Character Error Rate (CER)
|
58 |
try:
|
59 |
if len(ref_norm) > 0:
|
60 |
+
metrics["cer"] = Levenshtein.distance(ref_norm, pred_norm) / len(ref_norm)
|
61 |
else:
|
62 |
+
metrics["cer"] = 1.0 if len(pred_norm) > 0 else 0.0
|
63 |
except:
|
64 |
+
metrics["cer"] = 1.0
|
65 |
+
|
66 |
# Word Error Rate (WER)
|
67 |
try:
|
68 |
ref_words = ref_norm.split()
|
69 |
pred_words = pred_norm.split()
|
70 |
if len(ref_words) > 0:
|
71 |
+
metrics["wer"] = Levenshtein.distance(ref_words, pred_words) / len(
|
72 |
+
ref_words
|
73 |
+
)
|
74 |
else:
|
75 |
+
metrics["wer"] = 1.0 if len(pred_words) > 0 else 0.0
|
76 |
except:
|
77 |
+
metrics["wer"] = 1.0
|
78 |
+
|
79 |
# Length ratio
|
80 |
try:
|
81 |
if len(ref_norm) > 0:
|
82 |
+
metrics["len_ratio"] = len(pred_norm) / len(ref_norm)
|
83 |
else:
|
84 |
+
metrics["len_ratio"] = 1.0 if len(pred_norm) == 0 else float("inf")
|
85 |
except:
|
86 |
+
metrics["len_ratio"] = 1.0
|
87 |
+
|
88 |
# ROUGE scores
|
89 |
try:
|
90 |
+
scorer = rouge_scorer.RougeScorer(
|
91 |
+
["rouge1", "rouge2", "rougeL"], use_stemmer=True
|
92 |
+
)
|
93 |
rouge_scores = scorer.score(ref_norm, pred_norm)
|
94 |
+
|
95 |
+
metrics["rouge1"] = rouge_scores["rouge1"].fmeasure
|
96 |
+
metrics["rouge2"] = rouge_scores["rouge2"].fmeasure
|
97 |
+
metrics["rougeL"] = rouge_scores["rougeL"].fmeasure
|
98 |
except:
|
99 |
+
metrics["rouge1"] = 0.0
|
100 |
+
metrics["rouge2"] = 0.0
|
101 |
+
metrics["rougeL"] = 0.0
|
102 |
+
|
103 |
+
# Quality score (composite metric)
|
104 |
try:
|
105 |
quality_components = [
|
106 |
+
metrics["bleu"] / 100.0, # Normalize BLEU to 0-1
|
107 |
+
metrics["chrf"], # Already 0-1
|
108 |
+
1.0 - min(metrics["cer"], 1.0), # Invert error rates
|
109 |
+
1.0 - min(metrics["wer"], 1.0),
|
110 |
+
metrics["rouge1"],
|
111 |
+
metrics["rougeL"],
|
112 |
]
|
113 |
+
metrics["quality_score"] = np.mean(quality_components)
|
114 |
+
except:
|
115 |
+
metrics["quality_score"] = 0.0
|
116 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
return metrics
|
118 |
|
119 |
+
|
120 |
+
def calculate_statistical_metrics(values: List[float]) -> Dict[str, float]:
|
121 |
+
"""Calculate statistical measures including confidence intervals."""
|
122 |
+
|
123 |
+
if not values or len(values) == 0:
|
124 |
+
return {
|
125 |
+
"mean": 0.0,
|
126 |
+
"std": 0.0,
|
127 |
+
"median": 0.0,
|
128 |
+
"ci_lower": 0.0,
|
129 |
+
"ci_upper": 0.0,
|
130 |
+
"n_samples": 0,
|
131 |
+
}
|
132 |
+
|
133 |
+
values = np.array(values)
|
134 |
+
values = values[~np.isnan(values)] # Remove NaN values
|
135 |
+
|
136 |
+
if len(values) == 0:
|
137 |
+
return {
|
138 |
+
"mean": 0.0,
|
139 |
+
"std": 0.0,
|
140 |
+
"median": 0.0,
|
141 |
+
"ci_lower": 0.0,
|
142 |
+
"ci_upper": 0.0,
|
143 |
+
"n_samples": 0,
|
144 |
+
}
|
145 |
+
|
146 |
+
stats_dict = {
|
147 |
+
"mean": float(np.mean(values)),
|
148 |
+
"std": float(np.std(values, ddof=1)) if len(values) > 1 else 0.0,
|
149 |
+
"median": float(np.median(values)),
|
150 |
+
"n_samples": len(values),
|
151 |
+
}
|
152 |
+
|
153 |
+
# Calculate confidence intervals using bootstrap if enough samples
|
154 |
+
if len(values) >= STATISTICAL_CONFIG["min_samples_for_ci"]:
|
155 |
+
try:
|
156 |
+
confidence_level = STATISTICAL_CONFIG["confidence_level"]
|
157 |
+
|
158 |
+
# Bootstrap confidence interval
|
159 |
+
def mean_func(x):
|
160 |
+
return np.mean(x)
|
161 |
+
|
162 |
+
res = bootstrap(
|
163 |
+
(values,),
|
164 |
+
mean_func,
|
165 |
+
n_resamples=STATISTICAL_CONFIG["bootstrap_samples"],
|
166 |
+
confidence_level=confidence_level,
|
167 |
+
random_state=42,
|
168 |
+
)
|
169 |
+
|
170 |
+
stats_dict["ci_lower"] = float(res.confidence_interval.low)
|
171 |
+
stats_dict["ci_upper"] = float(res.confidence_interval.high)
|
172 |
+
|
173 |
+
except Exception as e:
|
174 |
+
# Fallback to t-distribution CI
|
175 |
+
try:
|
176 |
+
alpha = 1 - confidence_level
|
177 |
+
t_val = stats.t.ppf(1 - alpha / 2, len(values) - 1)
|
178 |
+
margin = t_val * stats_dict["std"] / np.sqrt(len(values))
|
179 |
+
stats_dict["ci_lower"] = stats_dict["mean"] - margin
|
180 |
+
stats_dict["ci_upper"] = stats_dict["mean"] + margin
|
181 |
+
except:
|
182 |
+
stats_dict["ci_lower"] = stats_dict["mean"]
|
183 |
+
stats_dict["ci_upper"] = stats_dict["mean"]
|
184 |
+
else:
|
185 |
+
stats_dict["ci_lower"] = stats_dict["mean"]
|
186 |
+
stats_dict["ci_upper"] = stats_dict["mean"]
|
187 |
+
|
188 |
+
return stats_dict
|
189 |
+
|
190 |
+
|
191 |
+
def perform_significance_test(
|
192 |
+
values1: List[float], values2: List[float], metric_name: str
|
193 |
+
) -> Dict[str, float]:
|
194 |
+
"""Perform statistical significance test between two groups."""
|
195 |
+
|
196 |
+
if len(values1) < 2 or len(values2) < 2:
|
197 |
+
return {"p_value": 1.0, "effect_size": 0.0, "significant": False}
|
198 |
+
|
199 |
+
values1 = np.array(values1)
|
200 |
+
values2 = np.array(values2)
|
201 |
+
|
202 |
+
# Remove NaN values
|
203 |
+
values1 = values1[~np.isnan(values1)]
|
204 |
+
values2 = values2[~np.isnan(values2)]
|
205 |
+
|
206 |
+
if len(values1) < 2 or len(values2) < 2:
|
207 |
+
return {"p_value": 1.0, "effect_size": 0.0, "significant": False}
|
208 |
+
|
209 |
+
try:
|
210 |
+
# Perform t-test
|
211 |
+
t_stat, p_value = stats.ttest_ind(values1, values2, equal_var=False)
|
212 |
+
|
213 |
+
# Calculate effect size (Cohen's d)
|
214 |
+
pooled_std = np.sqrt(
|
215 |
+
(
|
216 |
+
(len(values1) - 1) * np.var(values1, ddof=1)
|
217 |
+
+ (len(values2) - 1) * np.var(values2, ddof=1)
|
218 |
+
)
|
219 |
+
/ (len(values1) + len(values2) - 2)
|
220 |
+
)
|
221 |
+
|
222 |
+
if pooled_std > 0:
|
223 |
+
effect_size = abs(np.mean(values1) - np.mean(values2)) / pooled_std
|
224 |
+
else:
|
225 |
+
effect_size = 0.0
|
226 |
+
|
227 |
+
# Determine significance
|
228 |
+
significance_level = EVALUATION_TRACKS["google_comparable"][
|
229 |
+
"significance_level"
|
230 |
+
]
|
231 |
+
significant = p_value < significance_level
|
232 |
+
|
233 |
+
return {
|
234 |
+
"p_value": float(p_value),
|
235 |
+
"effect_size": float(effect_size),
|
236 |
+
"significant": significant,
|
237 |
+
"t_statistic": float(t_stat),
|
238 |
+
}
|
239 |
+
|
240 |
+
except Exception as e:
|
241 |
+
return {"p_value": 1.0, "effect_size": 0.0, "significant": False}
|
242 |
+
|
243 |
+
|
244 |
+
def evaluate_predictions_by_track(
|
245 |
+
predictions: pd.DataFrame, test_set: pd.DataFrame, track: str
|
246 |
+
) -> Dict:
|
247 |
+
"""Evaluate predictions for a specific track with statistical analysis."""
|
248 |
+
|
249 |
+
print(f"π Evaluating for {track} track...")
|
250 |
+
|
251 |
+
track_config = EVALUATION_TRACKS[track]
|
252 |
+
track_languages = track_config["languages"]
|
253 |
+
|
254 |
+
# Filter test set and predictions to track languages
|
255 |
+
track_test_set = test_set[
|
256 |
+
(test_set["source_language"].isin(track_languages))
|
257 |
+
& (test_set["target_language"].isin(track_languages))
|
258 |
+
].copy()
|
259 |
+
|
260 |
+
# Merge predictions with test set
|
261 |
+
merged = track_test_set.merge(
|
262 |
+
predictions, on="sample_id", how="inner", suffixes=("", "_pred")
|
263 |
)
|
264 |
+
|
265 |
if len(merged) == 0:
|
266 |
return {
|
267 |
+
"error": f"No matching samples found for {track} track",
|
268 |
+
"evaluated_samples": 0,
|
269 |
+
"track": track,
|
270 |
}
|
271 |
+
|
272 |
+
print(f"π Evaluating {len(merged)} samples for {track} track...")
|
273 |
+
|
274 |
# Calculate metrics for each sample
|
275 |
sample_metrics = []
|
276 |
for idx, row in merged.iterrows():
|
277 |
+
metrics = calculate_sentence_metrics(row["target_text"], row["prediction"])
|
278 |
+
metrics["sample_id"] = row["sample_id"]
|
279 |
+
metrics["source_language"] = row["source_language"]
|
280 |
+
metrics["target_language"] = row["target_language"]
|
|
|
281 |
sample_metrics.append(metrics)
|
282 |
+
|
283 |
sample_df = pd.DataFrame(sample_metrics)
|
284 |
+
|
285 |
+
# Aggregate by language pairs with statistical analysis
|
286 |
pair_metrics = {}
|
287 |
overall_metrics = defaultdict(list)
|
288 |
+
|
|
|
289 |
# Calculate metrics for each language pair
|
290 |
+
for src_lang in track_languages:
|
291 |
+
for tgt_lang in track_languages:
|
292 |
+
if src_lang == tgt_lang:
|
293 |
+
continue
|
294 |
+
|
295 |
+
pair_data = sample_df[
|
296 |
+
(sample_df["source_language"] == src_lang)
|
297 |
+
& (sample_df["target_language"] == tgt_lang)
|
298 |
+
]
|
299 |
+
|
300 |
+
if len(pair_data) >= track_config["min_samples_per_pair"]:
|
301 |
+
pair_key = f"{src_lang}_to_{tgt_lang}"
|
302 |
+
pair_metrics[pair_key] = {}
|
303 |
+
|
304 |
+
# Calculate statistical metrics for each measure
|
305 |
+
for metric in (
|
306 |
+
METRICS_CONFIG["primary_metrics"]
|
307 |
+
+ METRICS_CONFIG["secondary_metrics"]
|
308 |
+
):
|
309 |
+
if metric in pair_data.columns:
|
310 |
+
values = (
|
311 |
+
pair_data[metric]
|
312 |
+
.replace([np.inf, -np.inf], np.nan)
|
313 |
+
.dropna()
|
314 |
+
)
|
315 |
+
|
316 |
+
if len(values) > 0:
|
317 |
+
stats_metrics = calculate_statistical_metrics(
|
318 |
+
values.tolist()
|
319 |
+
)
|
320 |
+
pair_metrics[pair_key][metric] = stats_metrics
|
321 |
+
|
322 |
+
# Add to overall metrics for track-level statistics
|
323 |
+
overall_metrics[metric].append(stats_metrics["mean"])
|
324 |
+
|
325 |
+
pair_metrics[pair_key]["sample_count"] = len(pair_data)
|
326 |
+
pair_metrics[pair_key]["languages"] = f"{src_lang}-{tgt_lang}"
|
327 |
+
|
328 |
+
# Calculate track-level aggregated statistics
|
329 |
+
track_averages = {}
|
330 |
+
track_statistics = {}
|
331 |
+
|
332 |
for metric in overall_metrics:
|
333 |
if overall_metrics[metric]:
|
334 |
+
track_stats = calculate_statistical_metrics(overall_metrics[metric])
|
335 |
+
track_averages[metric] = track_stats["mean"]
|
336 |
+
track_statistics[metric] = track_stats
|
337 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
# Generate evaluation summary
|
339 |
summary = {
|
340 |
+
"track": track,
|
341 |
+
"track_name": track_config["name"],
|
342 |
+
"total_samples": len(sample_df),
|
343 |
+
"language_pairs_evaluated": len(
|
344 |
+
[k for k in pair_metrics if pair_metrics[k].get("sample_count", 0) > 0]
|
345 |
+
),
|
346 |
+
"languages_covered": len(
|
347 |
+
set(sample_df["source_language"]) | set(sample_df["target_language"])
|
348 |
+
),
|
349 |
+
"min_samples_per_pair": track_config["min_samples_per_pair"],
|
350 |
+
"statistical_power": track_config["statistical_power"],
|
351 |
+
"significance_level": track_config["significance_level"],
|
352 |
}
|
353 |
+
|
354 |
return {
|
355 |
+
"sample_metrics": sample_df,
|
356 |
+
"pair_metrics": pair_metrics,
|
357 |
+
"track_averages": track_averages,
|
358 |
+
"track_statistics": track_statistics,
|
359 |
+
"summary": summary,
|
360 |
+
"evaluated_samples": len(sample_df),
|
361 |
+
"track": track,
|
362 |
+
"error": None,
|
363 |
}
|
364 |
|
365 |
+
|
366 |
+
def evaluate_predictions_scientific(
|
367 |
+
predictions: pd.DataFrame, test_set: pd.DataFrame, model_category: str = "community"
|
368 |
+
) -> Dict:
|
369 |
+
"""Comprehensive evaluation across all tracks with scientific rigor."""
|
370 |
+
|
371 |
+
print("π¬ Starting scientific evaluation...")
|
372 |
+
|
373 |
+
# Validate model category
|
374 |
+
if model_category not in MODEL_CATEGORIES:
|
375 |
+
model_category = "community"
|
376 |
+
|
377 |
+
evaluation_results = {
|
378 |
+
"model_category": model_category,
|
379 |
+
"category_info": MODEL_CATEGORIES[model_category],
|
380 |
+
"tracks": {},
|
381 |
+
"cross_track_analysis": {},
|
382 |
+
"scientific_metadata": {
|
383 |
+
"evaluation_timestamp": pd.Timestamp.now().isoformat(),
|
384 |
+
"total_samples_submitted": len(predictions),
|
385 |
+
"total_samples_available": len(test_set),
|
386 |
+
},
|
387 |
+
}
|
388 |
+
|
389 |
+
# Evaluate each track
|
390 |
+
for track_name in EVALUATION_TRACKS.keys():
|
391 |
+
track_result = evaluate_predictions_by_track(predictions, test_set, track_name)
|
392 |
+
evaluation_results["tracks"][track_name] = track_result
|
393 |
+
|
394 |
+
# Cross-track consistency analysis
|
395 |
+
evaluation_results["cross_track_analysis"] = analyze_cross_track_consistency(
|
396 |
+
evaluation_results["tracks"]
|
397 |
+
)
|
398 |
+
|
399 |
+
return evaluation_results
|
400 |
+
|
401 |
+
|
402 |
+
def analyze_cross_track_consistency(track_results: Dict) -> Dict:
|
403 |
+
"""Analyze consistency of model performance across different tracks."""
|
404 |
+
|
405 |
+
consistency_analysis = {
|
406 |
+
"track_correlations": {},
|
407 |
+
"performance_stability": {},
|
408 |
+
"language_coverage_analysis": {},
|
409 |
}
|
410 |
+
|
411 |
+
# Extract quality scores from each track for correlation analysis
|
412 |
+
track_scores = {}
|
413 |
+
for track_name, track_data in track_results.items():
|
414 |
+
if (
|
415 |
+
track_data.get("track_averages")
|
416 |
+
and "quality_score" in track_data["track_averages"]
|
417 |
+
):
|
418 |
+
track_scores[track_name] = track_data["track_averages"]["quality_score"]
|
419 |
+
|
420 |
+
# Calculate pairwise correlations (would need more data points for meaningful correlation)
|
421 |
+
if len(track_scores) >= 2:
|
422 |
+
track_names = list(track_scores.keys())
|
423 |
+
for i, track1 in enumerate(track_names):
|
424 |
+
for track2 in track_names[i + 1 :]:
|
425 |
+
# This would be more meaningful with multiple models
|
426 |
+
consistency_analysis["track_correlations"][f"{track1}_vs_{track2}"] = {
|
427 |
+
"score_difference": abs(
|
428 |
+
track_scores[track1] - track_scores[track2]
|
429 |
+
),
|
430 |
+
"relative_performance": track_scores[track1]
|
431 |
+
/ max(track_scores[track2], 0.001),
|
432 |
+
}
|
433 |
+
|
434 |
+
# Language coverage analysis
|
435 |
+
for track_name, track_data in track_results.items():
|
436 |
+
if track_data.get("summary"):
|
437 |
+
summary = track_data["summary"]
|
438 |
+
consistency_analysis["language_coverage_analysis"][track_name] = {
|
439 |
+
"coverage_rate": summary["language_pairs_evaluated"]
|
440 |
+
/ max(summary.get("total_possible_pairs", 1), 1),
|
441 |
+
"samples_per_pair": summary["total_samples"]
|
442 |
+
/ max(summary["language_pairs_evaluated"], 1),
|
443 |
+
"statistical_adequacy": summary["total_samples"]
|
444 |
+
>= EVALUATION_TRACKS[track_name]["min_samples_per_pair"]
|
445 |
+
* summary["language_pairs_evaluated"],
|
446 |
}
|
447 |
+
|
448 |
+
return consistency_analysis
|
449 |
+
|
450 |
+
|
451 |
+
def compare_models_statistically(
|
452 |
+
model1_results: Dict, model2_results: Dict, track: str = "google_comparable"
|
453 |
+
) -> Dict:
|
454 |
+
"""Perform statistical comparison between two models on a specific track."""
|
455 |
+
|
456 |
+
if track not in model1_results.get("tracks", {}) or track not in model2_results.get(
|
457 |
+
"tracks", {}
|
458 |
+
):
|
459 |
+
return {"error": f"Track {track} not available for both models"}
|
460 |
+
|
461 |
+
track1_data = model1_results["tracks"][track]
|
462 |
+
track2_data = model2_results["tracks"][track]
|
463 |
+
|
464 |
+
if track1_data.get("error") or track2_data.get("error"):
|
465 |
+
return {"error": "One or both models have evaluation errors"}
|
466 |
+
|
467 |
+
comparison_results = {
|
468 |
+
"track": track,
|
469 |
+
"model1_category": model1_results.get("model_category", "unknown"),
|
470 |
+
"model2_category": model2_results.get("model_category", "unknown"),
|
471 |
+
"metric_comparisons": {},
|
472 |
+
"language_pair_comparisons": {},
|
473 |
+
"overall_significance": {},
|
474 |
+
}
|
475 |
+
|
476 |
+
# Compare each metric
|
477 |
+
for metric in (
|
478 |
+
METRICS_CONFIG["primary_metrics"] + METRICS_CONFIG["secondary_metrics"]
|
479 |
+
):
|
480 |
+
if metric in track1_data.get(
|
481 |
+
"track_statistics", {}
|
482 |
+
) and metric in track2_data.get("track_statistics", {}):
|
483 |
+
|
484 |
+
# Extract sample-level data for this metric from both models
|
485 |
+
# This would require access to the original sample metrics
|
486 |
+
# For now, we'll use the aggregated statistics
|
487 |
+
|
488 |
+
stats1 = track1_data["track_statistics"][metric]
|
489 |
+
stats2 = track2_data["track_statistics"][metric]
|
490 |
+
|
491 |
+
# Create comparison summary
|
492 |
+
comparison_results["metric_comparisons"][metric] = {
|
493 |
+
"model1_mean": stats1["mean"],
|
494 |
+
"model1_ci": [stats1["ci_lower"], stats1["ci_upper"]],
|
495 |
+
"model2_mean": stats2["mean"],
|
496 |
+
"model2_ci": [stats2["ci_lower"], stats2["ci_upper"]],
|
497 |
+
"difference": stats1["mean"] - stats2["mean"],
|
498 |
+
"ci_overlap": not (
|
499 |
+
stats1["ci_upper"] < stats2["ci_lower"]
|
500 |
+
or stats2["ci_upper"] < stats1["ci_lower"]
|
501 |
+
),
|
502 |
+
}
|
503 |
+
|
504 |
+
return comparison_results
|
505 |
+
|
506 |
+
|
507 |
+
def generate_scientific_report(
|
508 |
+
results: Dict, model_name: str = "", baseline_results: Dict = None
|
509 |
+
) -> str:
|
510 |
+
"""Generate a comprehensive scientific evaluation report."""
|
511 |
+
|
512 |
+
if any(
|
513 |
+
track_data.get("error") for track_data in results.get("tracks", {}).values()
|
514 |
+
):
|
515 |
+
return f"β **Evaluation Error**: Unable to complete scientific evaluation"
|
516 |
+
|
517 |
report = []
|
518 |
+
|
519 |
# Header
|
520 |
+
report.append(f"# π¬ Scientific Evaluation Report: {model_name or 'Model'}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
521 |
report.append("")
|
522 |
+
|
523 |
+
# Model categorization
|
524 |
+
category_info = results.get("category_info", {})
|
525 |
+
report.append(f"**Model Category**: {category_info.get('name', 'Unknown')}")
|
526 |
+
report.append(
|
527 |
+
f"**Category Description**: {category_info.get('description', 'N/A')}"
|
528 |
+
)
|
529 |
report.append("")
|
530 |
+
|
531 |
+
# Track-by-track analysis
|
532 |
+
for track_name, track_data in results.get("tracks", {}).items():
|
533 |
+
if track_data.get("error"):
|
534 |
+
continue
|
535 |
+
|
536 |
+
track_config = EVALUATION_TRACKS[track_name]
|
537 |
+
summary = track_data.get("summary", {})
|
538 |
+
track_stats = track_data.get("track_statistics", {})
|
539 |
+
|
540 |
+
report.append(f"## {track_config['name']}")
|
541 |
+
report.append(f"*{track_config['description']}*")
|
542 |
+
report.append("")
|
543 |
+
|
544 |
+
# Summary statistics
|
545 |
+
report.append("### π Summary Statistics")
|
546 |
+
report.append(f"- **Samples Evaluated**: {summary.get('total_samples', 0):,}")
|
547 |
+
report.append(
|
548 |
+
f"- **Language Pairs**: {summary.get('language_pairs_evaluated', 0)}"
|
549 |
)
|
550 |
+
report.append(f"- **Languages Covered**: {summary.get('languages_covered', 0)}")
|
551 |
+
report.append(f"- **Statistical Power**: {track_config['statistical_power']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
552 |
report.append("")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
553 |
|
554 |
+
# Primary metrics with confidence intervals
|
555 |
+
report.append("### π― Primary Metrics (95% Confidence Intervals)")
|
556 |
+
for metric in METRICS_CONFIG["primary_metrics"]:
|
557 |
+
if metric in track_stats:
|
558 |
+
stats = track_stats[metric]
|
559 |
+
mean_val = stats["mean"]
|
560 |
+
ci_lower = stats["ci_lower"]
|
561 |
+
ci_upper = stats["ci_upper"]
|
562 |
+
|
563 |
+
report.append(
|
564 |
+
f"- **{metric.upper()}**: {mean_val:.4f} [{ci_lower:.4f}, {ci_upper:.4f}]"
|
565 |
+
)
|
566 |
+
report.append("")
|
567 |
+
|
568 |
+
# Statistical adequacy assessment
|
569 |
+
min_required = track_config["min_samples_per_pair"] * summary.get(
|
570 |
+
"language_pairs_evaluated", 0
|
571 |
+
)
|
572 |
+
adequacy = (
|
573 |
+
"β
Adequate"
|
574 |
+
if summary.get("total_samples", 0) >= min_required
|
575 |
+
else "β οΈ Limited"
|
576 |
+
)
|
577 |
+
report.append(f"**Statistical Adequacy**: {adequacy}")
|
578 |
+
report.append("")
|
579 |
+
|
580 |
+
# Cross-track analysis
|
581 |
+
cross_track = results.get("cross_track_analysis", {})
|
582 |
+
if cross_track:
|
583 |
+
report.append("## π Cross-Track Consistency Analysis")
|
584 |
+
|
585 |
+
coverage_analysis = cross_track.get("language_coverage_analysis", {})
|
586 |
+
for track_name, coverage_info in coverage_analysis.items():
|
587 |
+
adequacy = (
|
588 |
+
"β
Statistically adequate"
|
589 |
+
if coverage_info.get("statistical_adequacy")
|
590 |
+
else "β οΈ Limited statistical power"
|
591 |
+
)
|
592 |
+
report.append(f"- **{track_name}**: {adequacy}")
|
593 |
+
|
594 |
+
report.append("")
|
595 |
+
|
596 |
+
# Baseline comparison if available
|
597 |
+
if baseline_results:
|
598 |
+
report.append("## π Baseline Comparison")
|
599 |
+
# This would include detailed statistical comparisons
|
600 |
+
report.append("*Statistical comparison with baseline models*")
|
601 |
+
report.append("")
|
602 |
+
|
603 |
+
# Scientific recommendations
|
604 |
+
report.append("## π‘ Scientific Recommendations")
|
605 |
+
|
606 |
+
total_samples = sum(
|
607 |
+
track_data.get("summary", {}).get("total_samples", 0)
|
608 |
+
for track_data in results.get("tracks", {}).values()
|
609 |
+
if not track_data.get("error")
|
610 |
+
)
|
611 |
+
|
612 |
+
if total_samples < SAMPLE_SIZE_RECOMMENDATIONS["publication_quality"]:
|
613 |
+
report.append(
|
614 |
+
"- β οΈ Consider collecting more evaluation samples for publication-quality results"
|
615 |
+
)
|
616 |
+
|
617 |
+
google_track = results.get("tracks", {}).get("google_comparable", {})
|
618 |
+
if (
|
619 |
+
not google_track.get("error")
|
620 |
+
and google_track.get("summary", {}).get("total_samples", 0) > 100
|
621 |
+
):
|
622 |
+
report.append("- β
Sufficient data for comparison with commercial systems")
|
623 |
+
|
624 |
+
report.append("")
|
625 |
+
|
626 |
+
return "\n".join(report)
|